Bibliography

[1] Adan, I. and Resing, J.. Queueing Theory. http://web2.uwindsor.ca/math/hlynka/qonline.html .

[2] Allen, A. O.. Probability, statistics, and queueing theory with computer science applications, 2nd ed.. Academic Press, Inc., Boston, MA. 1990.

[3] Anisimov, V. and Zakusilo, O. and Donchenko, V.. Elements of queueing theory and asymptotic analysis of system. Visha Skola, Kiev. 1987.

[4] Artalejo, J. and Gómez-Corral, A.. Retrial queueing systems. Springer, Berlin. 2008.

[5] Asztalos, D.. Finite source queueing systems and their applications to computer systems ( in Hungarian ). Alkalmazott Matematikai Lapok. 1979. 89–101.

[6] Asztalos, D.. Optimal control of finite source priority queues with computer system applications. Computers & Mathematics with Applications. 6. 1980. 425–431.

[7] Begain, K., Bolch, G. and Herold, H.. Practical perfromance modeling, Application of the MOSEL language. Wiley & Sons., New York. 2001.

[8] Bolch, G., Greiner, S., de Meer, H. and Trivedi, K.. Queueing networks and Markov chains, 2nd ed. Wiley & Sons, New York. 2006.

[9] Bose, S.. An introduction to queueing systems. Kluwer Academic/Plenum Publishers, New York. 2002.

[10] Breuer, L. and Baum, D.. An introduction to queueing theory and matrixanalytic methods. Springer. 2005.

[11] Brockmeyer, E., Halstrom, H. and Jensen, A.. The life and works of a.k. erlang. Academy of Technical Sciences, Copenhagen. 1948.

[12] Bunday, B., and Scraton, R.. The G/M/r machine interference model. European Journal of Operational Research. 4. 1980. 399–402.

[13] Chee-Hock, N. and Boon-He, S.. Queueing modelling fundamentals, 2nd ed.. Wiley & Son, Chichester. 2002.

[14] Cohen, J.. The multiple phase service network with generalized processor sharing. Acta Informatica. 12. 1979. 245–284.

[15] Cooper, R.. Introduction to Queueing Theory, 3-rd Edition. CEE Press, Washington. 1990, http://web2.uwindsor.ca/math/hlynka/qonline.html .

[16] Csige, L. and Tomkó, J.. Machine interference problem with exponential distributions ( in Hungarian ). Alkalmazott Matematikai Lapok. 1982. 107–124.

[17] Daigle, J.. Queueing theory with applications to packet telecommunication. Springer, New York. 2005.

[18] Daigle, J. N. Queueing theory for telecommunications. Addison-Wesley, Reading, MA. 1992.

[19] Dattatreya, G.. Performance analysis of queuing and computer networks. CRC Press, Boca Raton. 2008.

[20] Dshalalow, Jewgeni H.(ed.). Frontiers in queueing: Models and applications in science and engineering. CRC Press, Boca Raton. 1997.

[21] Erlang, A.. The theory of probabilities and telephone conversations. Nyt Tidsskrift for Matematik B. 20. 1909. 33–39.

[22] Erlang, A.. Solution of some problems in the theory of probabilities of significance in automatic telephone exchanges. The Post Office Electrical Engineers' Journal. 10. 1918. 189–197.

[23] Falin, G. and Templeton, J.. Retrial queues. Chapman and Hall, London. 1997.

[24] Fazekas, I.. Theory of probability ( in Hungarian ). Kossuth Egyetemi Kiadó, Debrecen. 2000.

[25] Franken, P., Konig, D., Arndt, U. and Schmidt, V.. Queues and point processes. Academie Verlag, Berlin. 1981.

[26] Gebali, F.. Analysis of computer and communication networks. Springer, New York. 2008.

[27] Gelenbe, E. and Mitrani, I.. Analysis and synthesis of computer systems. Academic Press, London. 1980.

[28] Gelenbe, E. and Pujolle, G.. Introduction to queueing networks. Wiley & Sons, Chichester. 1987.

[29] Gnedenko, B., Belyayev, J., and Solovyev, A.. Mathematical methods of reliability theory ( in Hungarian ). Műszaki Könyvkiadó, Budapest. 1970.

[30] Gnedenko, B., Belyayev, Y., and Solovyev, A.. Mathematical methods of reliability theory. Academic Press, New York, London. 1969.

[31] Gnedenko, B., and Kovalenko, I.. Introduction to queueing theory. Birkhaeuser, Boston, MA. 1991.

[32] Gross, D., Shortle, J. F., Thompson, J. M., Harris, C. M.. Fundamentals of queueing theory, 4th edition. John Wiley & Sons, New York. 2008.

[33] Györfi, L., and Páli, I.. Queueing theory in informatics systems (in Hungarian). Műegyetemi Kiadó, Budapest. 1996.

[34] Haghighi, A. M. and Mishev, D. P.. Queueing models in industry and business. Nova Science Publishers, Inc., New York. 2008.

[35] Hall, R. W.. Queueing methods for services and manufacturing. Prentice Hall, Englewood Cliffs, NJ. 1991.

[36] Haribaskaran, G.. Probability, queueing theory and reliability engineering. Laxmi Publications, Bangalore. 2006.

[37] Haverkort, B.. Performance of computer communication systems: A model-based approach. Wiley & Sons, New York. 1998.

[38] Hlynka, M.. Queueing Theory Page. http://web2.uwindsor.ca/math/hlynka/queue.html .

[39] Ivcsenko, G. I., Kastanov, V. A, Kovalenko, I. N.. Theory of queueing systems. Nauka, Moscow. 1982.

[40] Iversen, V.. Teletraffic Engineering Handbook. ITC in Cooperation with ITU-D SG2. 2005, http://web2.uwindsor.ca/math/hlynka/qonline.html .

[41] Jain, R.. The art of computer systems performance analysis. Wiley & Sons, New York. 1991.

[42] Jaiswal, N.. Priority queues. Academic Press, New York. 1969.

[43] Jereb, L., and Telek, M.. Queueing systems ( in Hungarian ). Teaching material, BME Department of Telecommunication. http://webspn.hit.bme.hu/~telek/notes/sokfelh.pdf .

[44] Karlin, S. and Taylor, H.. Stochastic process ( in Hungarian ). Gondolat Kiadó, Budapest. 1985.

[45] Karlin, S., and Taylor, H.. An introduction to stochastic modeling. Harcourt, New York. 1998.

[46] Khintchine, A.. Mathematical methods in the theory of queueing. Hafner, New York. 1969.

[47] Kleinrock, L.. Queueing systems. Vol. I. Theory. John Wiley & Sons, New York. 1975.

[48] Kleinrock, L.. Queueing systems. Vol. I. Theory ( in Hungarian ). Műszaki Kiadó, Budapest. 1975.

[49] Kleinrock, L.. Queueing systems. Vol. II: Computer applications. John Wiley & Sons, New York. 1976.

[50] Kobayashi, H.. Modeling and Analysis: An Introduction to System Performance Evaluation Methodology. Addison-Wesley, Reading, MA. 1978.

[51] Kobayashi, H. and Mark, B.. System modeling and analysis: Foundations of system performance evaluation. Pearson Education Inc., Upper Sadle River. 2008.

[52] Korolyuk, V. S. and Korolyuk, V. V.. Stochastic models of systems. Kluwer Academic Publishers, Dordrecht, London. 1999.

[53] Kovalenko, I. N. and Pegg, P. A. and Kuznetzov, N. Y.. Mathematical theory of reliability of time dependent systems with practical applications. Wiley & Sons, New York. 1997.

[54] Kulkarni, V.. Modeling, analysis, design, and control of stochastic systems. Springer, New York. 1999.

[55] Lakatos, L., Szeidl, L., and Telek, M.. Algorithms in informatics, Vol. II (in Hungarian). ELTE Eötvös Kiadó, ch. Queueing theory ( in Hungarian ). 2005. 1298–1347.

[56] Lavenberg, S.. Computer performance modeling handbook. Academic Press, New York. 1983.

[57] Lefebvre, M.. Basic probability theory with applications. Springer. 2009.

[58] Mieghem, P. V.. Performance analysis of communications networks and systems. Cambridge University Press, Cambridge. 2006.

[59] Nelson, R.. Probability, stochastic processes, and queueing theory, The mathematics of computer performance modeling. Springer-Verlag, New York. 1995.

[60] Ovcharov, L. and Wentzel, E.. Applied Problems in Probability Theory. Mir Publishers, Moscow, New York. 1986.

[61] Prékopa, A.. Probability theory ( in Hungarian ). Műszaki Könyvkiadó, Budapest. 1962.

[62] Pósafalvi, A. and Sztrik, J.. On the heterogeneous machine interference with limited server's availability. European. Journal of Operational Research. 28. 1987. 321–328.

[63] Pósafalvi, A., and Sztrik, J.. A numerical approach to the repairman problem with two different types of machines. Journal of Operational Reseach Society. 40. 1989. 797–803.

[64] Ravichandran, N.. Stochastic Methods in Reliability Theory. John Wiley and Sons, New York. 1990.

[65] Reimann, J.. Probability theory and statistics for ernineers ( in Hungarian). Tankönyvkiadó, Budapest. 1992.

[66] Rényi, A.. Probability theory ( in Hungarian ). Tankönyvkiadó, Budapest. 1973.

[67] Ross, S. M.. Introduction to Probability Models. Academic Press, Boston. 1989.

[68] Saaty, T.. Elements of queueing theory with applications. Dover Publications, Inc., New York. 1961.

[69] Saaty, T.. Elements of Queueing Theory with Applications. McGraw-Hill. 1961.

[70] Sahner, R., Trivedi, K. and Puliafito, A.. Performance and reliability analysis of computer systems – An example-based approach using the SHARPE software package. Kluwer Academic Publisher, Boston, M.A.. 1996.

[71] Sauer, C. H. and Chandy, K. M.. Computer systems performance modelling. Prentice Hall, Englewood Cliffs, N. J.. 1981.

[72] Schatte, P.. On the finite population G/M/1 queue and its application to multiprogrammed computers. Journal of lnformation Processing and Cybernetics. 16. 1980. 433–441.

[73] Stewart, W. J.. Introduction to the numerical solution of Markov chains. Princeton University Press, Princeton. 1995.

[74] Stewart , W.. Probability, Markov chains, queues, and simulation. Princeton University Press, Princeton. 2009.

[75] Stidham, S.. Optimal design of queueing systems. CRC Press/Taylor & Francis. 2009.

[76] Syski, R.. Introduction to Congestion Theory in Telephone Systems, 2nd Edition. North Holland. 2005.

[77] Sztrik, J.. On the finite-source G/m/r queues. European Journal of Operational Research. 20. 1985. 261–268.

[78] Sztrik, J.. On the n/G/M/1 queue and Erlang's loss formulas. Serdica. 12. 1986. 321–331.

[79] Sztrik, J.. On the G/M/r/FIFO machine interference model with statedependent speeds. Journal of Operational Researc Society. 39. 1988. 201–201.

[80] Sztrik, J.. Some contribution to the machine interference problem with heterogeneous machines. Journal of Information Processing and Cybernetics. 24. 1988. 137–143.

[81] Sztrik, J.. An introduction to queueing theory and its applications (in Hungarian). Kossuth Egyetemi Kiadó, Debrecen. 2000, http://irh.inf.unideb.hu/user/jsztrik/education/eNotes.htm .

[82] Sztrik, J.. A key to queueing theory with applications (in Hungarian).. Kossuth Egyetemi Kiadó, Debrecen. 2004, http://irh.inf.unideb.hu/user/jsztrik/education/eNotes.htm .

[83] Sztrik, J.. Practical queueing theory. Teaching material, Debrecen University Egyetem,Faculty if Informatics. 2005, http://irh.inf.unideb.hu/user/jsztrik/education/09/english/index.html .

[84] Sztrik, J.. Performance modeling of informatics systems ( in Hungarian ). EKF Líceum Kiadó, Eger. 2007.

[85] Takagi, H.. Queueing analysis. A foundation of performance evaluation. Volume 1: Vacation and priority systems, part 1. North-Holland, Amsterdam. 1991.

[86] Takagi, H.. Queueing analysis. A foundation of performance evaluation. Volume 2: Finite Systems. North-Holland, Amsterdam. 1993.

[87] Takagi, H.. Queueing analysis. A foundation of performance evaluation. Volume 3: Discrete-Time Systems. North-Holland, Amsterdam. 1993.

[88] Takács, L.. Introduction to the theory of queues. Oxford University Press, New York. 1962.

[89] Takács, L.. Combinatorial Methods in the Theory of Stochastic Processes. John Wiley & Sons. 1977.

[90] Tijms, H.. Stochastic Modelling and Analysis: A Computational Approach. Wiley & Sons, New York. 1986.

[91] Tijms, H. A first course in stochastic models. Wiley & Son, Chichester. 2003.

[92] Tomkó, J. On sojourn times for semi-Markov processes. Proceeding of the 14th European Meeting of Statisticians, Wroclaw. 1981.

[93] Tomkó, J.. Sojourn time problems for Markov chains ( in Hungarian ). Alkalmazott Matematikai Lapok. 1982. 91–106.

[94] Trivedi, K.. Probability and Statistics with Reliability, Queuing, and Computer Science Applications, 2-nd edition. Wiley & Son, New York. 2002.

[95] Ushakov, I. A. and Harrison, R. A.. Handbook of reliability engineering. Transl. from the Russian. Updated ed. John Wiley & Sons, New York, NY. 1994.

[96] van Hoorn, M.. Algorithms and approximations for queueing systems. Centrum voor Wiskunde en Informatica, Amsterdam. 1984.

[97] Virtamo, J.. Queueing Theory. http://www.netlab.tkk.fi/opetus/s383143/kalvot/english.shtml .

[98] Wentzel, E. and Ovcharov, L.. Applied problems in probabbility theory. Mir Publisher, Moscow. 1986.

[99] White, J.. Analysis of queueing systems. Academic Press, New York. 1975.

[100] Wolf, R.. Stochastic Modeling and the Theory of Queues. Prentice-Hall. 1989.

[101] Yashkov, S.. Processor-sharing queues: some progress in analysis. Queueing Systems: Theory and Applications. 2. 1987. 1–17.