[1] Adan, I. and Resing, J.. Queueing Theory.
http://web2.uwindsor.ca/math/hlynka/qonline.html
.
[2] Allen, A. O.. Probability, statistics, and queueing theory with computer
science applications, 2nd ed.. Academic Press, Inc., Boston, MA. 1990.
[3] Anisimov, V. and Zakusilo, O. and Donchenko, V.. Elements of queueing theory and asymptotic analysis of
system. Visha Skola, Kiev. 1987.
[4] Artalejo, J. and Gómez-Corral, A.. Retrial queueing systems. Springer, Berlin. 2008.
[5] Asztalos, D.. Finite source queueing systems and their applications to computer
systems ( in Hungarian ). Alkalmazott Matematikai Lapok. 1979. 89–101.
[6] Asztalos, D.. Optimal control of finite source priority queues with computer
system applications. Computers & Mathematics with
Applications. 1980. 425–431.
[7] Begain, K., Bolch, G. and Herold, H.. Practical perfromance modeling, Application of the MOSEL
language. Wiley & Sons., New York. 2001.
[8] Bolch, G., Greiner, S., de Meer, H. and Trivedi, K.. Queueing networks and Markov chains, 2nd ed. Wiley & Sons, New York. 2006.
[9] Bose, S.. An introduction to queueing systems. Kluwer Academic/Plenum Publishers, New
York. 2002.
[10] Breuer, L. and Baum, D.. An introduction to queueing theory and matrixanalytic
methods. Springer. 2005.
[11] Brockmeyer, E., Halstrom, H. and Jensen, A.. The life and works of a.k. erlang. Academy of Technical Sciences, Copenhagen. 1948.
[12] Bunday, B., and Scraton, R.. The G/M/r machine interference model. European Journal of Operational Research. 1980. 399–402.
[13] Chee-Hock, N. and Boon-He, S.. Queueing modelling fundamentals, 2nd ed.. Wiley & Son, Chichester. 2002.
[14] Cohen, J.. The multiple phase service network with generalized processor
sharing. Acta Informatica. 1979. 245–284.
[15] Cooper, R.. Introduction to Queueing Theory, 3-rd Edition. CEE Press, Washington. 1990, http://web2.uwindsor.ca/math/hlynka/qonline.html
.
[16] Csige, L. and Tomkó, J.. Machine interference problem with exponential distributions ( in
Hungarian ). Alkalmazott Matematikai Lapok. 1982. 107–124.
[17] Daigle, J.. Queueing theory with applications to packet
telecommunication. Springer, New York. 2005.
[18] Daigle, J. N. Queueing theory for telecommunications. Addison-Wesley, Reading, MA. 1992.
[19] Dattatreya, G.. Performance analysis of queuing and computer networks. CRC Press, Boca Raton. 2008.
[20] Dshalalow, Jewgeni H.(ed.). Frontiers in queueing: Models and applications in science and
engineering. CRC Press, Boca Raton. 1997.
[21] Erlang, A.. The theory of probabilities and telephone conversations. Nyt Tidsskrift for Matematik B. 1909. 33–39.
[22] Erlang, A.. Solution of some problems in the theory of probabilities of
significance in automatic telephone exchanges. The Post Office Electrical Engineers'
Journal. 1918. 189–197.
[23] Falin, G. and Templeton, J.. Retrial queues. Chapman and Hall, London. 1997.
[24] Fazekas, I.. Theory of probability ( in Hungarian ). Kossuth Egyetemi Kiadó, Debrecen. 2000.
[25] Franken, P., Konig, D., Arndt, U. and Schmidt, V.. Queues and point processes. Academie Verlag, Berlin. 1981.
[26] Gebali, F.. Analysis of computer and communication networks. Springer, New York. 2008.
[27] Gelenbe, E. and Mitrani, I.. Analysis and synthesis of computer systems. Academic Press, London. 1980.
[28] Gelenbe, E. and Pujolle, G.. Introduction to queueing networks. Wiley & Sons, Chichester. 1987.
[29] Gnedenko, B., Belyayev, J., and Solovyev, A.. Mathematical methods of reliability theory ( in Hungarian
). Műszaki Könyvkiadó, Budapest. 1970.
[30] Gnedenko, B., Belyayev, Y., and Solovyev, A.. Mathematical methods of reliability theory. Academic Press, New York, London. 1969.
[31] Gnedenko, B., and Kovalenko, I.. Introduction to queueing theory. Birkhaeuser, Boston, MA. 1991.
[32] Gross, D., Shortle, J. F., Thompson, J. M., Harris, C.
M.. Fundamentals of queueing theory, 4th edition. John Wiley & Sons, New York. 2008.
[33] Györfi, L., and Páli, I.. Queueing theory in informatics systems (in Hungarian). Műegyetemi Kiadó, Budapest. 1996.
[34] Haghighi, A. M. and Mishev, D. P.. Queueing models in industry and business. Nova Science Publishers, Inc., New York. 2008.
[35] Hall, R. W.. Queueing methods for services and manufacturing. Prentice Hall, Englewood Cliffs, NJ. 1991.
[36] Haribaskaran, G.. Probability, queueing theory and reliability engineering. Laxmi Publications, Bangalore. 2006.
[37] Haverkort, B.. Performance of computer communication systems: A model-based
approach. Wiley & Sons, New York. 1998.
[39] Ivcsenko, G. I., Kastanov, V. A, Kovalenko, I. N.. Theory of queueing systems. Nauka, Moscow. 1982.
[40] Iversen, V.. Teletraffic Engineering Handbook. ITC in Cooperation with ITU-D SG2. 2005, http://web2.uwindsor.ca/math/hlynka/qonline.html
.
[41] Jain, R.. The art of computer systems performance analysis. Wiley & Sons, New York. 1991.
[42] Jaiswal, N.. Priority queues. Academic Press, New York. 1969.
[43] Jereb, L., and Telek, M.. Queueing systems ( in Hungarian ). Teaching material, BME Department of
Telecommunication.
http://webspn.hit.bme.hu/~telek/notes/sokfelh.pdf
.
[44] Karlin, S. and Taylor, H.. Stochastic process ( in Hungarian ). Gondolat Kiadó, Budapest. 1985.
[45] Karlin, S., and Taylor, H.. An introduction to stochastic modeling. Harcourt, New York. 1998.
[46] Khintchine, A.. Mathematical methods in the theory of queueing. Hafner, New York. 1969.
[47] Kleinrock, L.. Queueing systems. Vol. I. Theory. John Wiley & Sons, New York. 1975.
[48] Kleinrock, L.. Queueing systems. Vol. I. Theory ( in Hungarian ). Műszaki Kiadó, Budapest. 1975.
[49] Kleinrock, L.. Queueing systems. Vol. II: Computer applications. John Wiley & Sons, New York. 1976.
[50] Kobayashi, H.. Modeling and Analysis: An Introduction to System Performance
Evaluation Methodology. Addison-Wesley, Reading, MA. 1978.
[51] Kobayashi, H. and Mark, B.. System modeling and analysis: Foundations of system performance
evaluation. Pearson Education Inc., Upper Sadle River. 2008.
[52] Korolyuk, V. S. and Korolyuk, V. V.. Stochastic models of systems. Kluwer Academic Publishers, Dordrecht,
London. 1999.
[53] Kovalenko, I. N. and Pegg, P. A. and Kuznetzov, N.
Y.. Mathematical theory of reliability of time dependent systems with
practical applications. Wiley & Sons, New York. 1997.
[54] Kulkarni, V.. Modeling, analysis, design, and control of stochastic
systems. Springer, New York. 1999.
[55] Lakatos, L., Szeidl, L., and Telek, M.. Algorithms in informatics, Vol. II (in Hungarian). ELTE Eötvös Kiadó, ch. Queueing theory ( in Hungarian
). 2005. 1298–1347.
[56] Lavenberg, S.. Computer performance modeling handbook. Academic Press, New York. 1983.
[57] Lefebvre, M.. Basic probability theory with applications. Springer. 2009.
[58] Mieghem, P. V.. Performance analysis of communications networks and
systems. Cambridge University Press, Cambridge. 2006.
[59] Nelson, R.. Probability, stochastic processes, and queueing theory, The
mathematics of computer performance modeling. Springer-Verlag, New York. 1995.
[60] Ovcharov, L. and Wentzel, E.. Applied Problems in Probability Theory. Mir Publishers, Moscow, New York. 1986.
[61] Prékopa, A.. Probability theory ( in Hungarian ). Műszaki Könyvkiadó, Budapest. 1962.
[62] Pósafalvi, A. and Sztrik, J.. On the heterogeneous machine interference with limited server's
availability. European. Journal of Operational Research. 1987. 321–328.
[63] Pósafalvi, A., and Sztrik, J.. A numerical approach to the repairman problem with two different
types of machines. Journal of Operational Reseach Society. 1989. 797–803.
[64] Ravichandran, N.. Stochastic Methods in Reliability Theory. John Wiley and Sons, New York. 1990.
[65] Reimann, J.. Probability theory and statistics for ernineers ( in
Hungarian). Tankönyvkiadó, Budapest. 1992.
[66] Rényi, A.. Probability theory ( in Hungarian ). Tankönyvkiadó, Budapest. 1973.
[67] Ross, S. M.. Introduction to Probability Models. Academic Press, Boston. 1989.
[68] Saaty, T.. Elements of queueing theory with applications. Dover Publications, Inc., New York. 1961.
[69] Saaty, T.. Elements of Queueing Theory with Applications. McGraw-Hill. 1961.
[70] Sahner, R., Trivedi, K. and Puliafito, A.. Performance and reliability analysis of computer systems – An
example-based approach using the SHARPE software package. Kluwer Academic Publisher, Boston, M.A.. 1996.
[71] Sauer, C. H. and Chandy, K. M.. Computer systems performance modelling. Prentice Hall, Englewood Cliffs, N. J.. 1981.
[72] Schatte, P.. On the finite population G/M/1 queue and its application to
multiprogrammed computers. Journal of lnformation Processing and
Cybernetics. 1980. 433–441.
[73] Stewart, W. J.. Introduction to the numerical solution of Markov chains. Princeton University Press, Princeton. 1995.
[74] Stewart , W.. Probability, Markov chains, queues, and simulation. Princeton University Press, Princeton. 2009.
[75] Stidham, S.. Optimal design of queueing systems. CRC Press/Taylor & Francis. 2009.
[76] Syski, R.. Introduction to Congestion Theory in Telephone Systems, 2nd
Edition. North Holland. 2005.
[77] Sztrik, J.. On the finite-source G/m/r queues. European Journal of Operational Research. 1985. 261–268.
[78] Sztrik, J.. On the n/G/M/1 queue and Erlang's loss formulas. Serdica. 1986. 321–331.
[79] Sztrik, J.. On the G/M/r/FIFO machine interference model with statedependent
speeds. Journal of Operational Researc Society. 1988. 201–201.
[80] Sztrik, J.. Some contribution to the machine interference problem with
heterogeneous machines. Journal of Information Processing and
Cybernetics. 1988. 137–143.
[81] Sztrik, J.. An introduction to queueing theory and its applications (in
Hungarian). Kossuth Egyetemi Kiadó, Debrecen. 2000, http://irh.inf.unideb.hu/user/jsztrik/education/eNotes.htm
.
[82] Sztrik, J.. A key to queueing theory with applications (in
Hungarian).. Kossuth Egyetemi Kiadó, Debrecen. 2004, http://irh.inf.unideb.hu/user/jsztrik/education/eNotes.htm
.
[83] Sztrik, J.. Practical queueing theory. Teaching material, Debrecen University Egyetem,Faculty if
Informatics. 2005, http://irh.inf.unideb.hu/user/jsztrik/education/09/english/index.html
.
[84] Sztrik, J.. Performance modeling of informatics systems ( in Hungarian
). EKF Líceum Kiadó, Eger. 2007.
[85] Takagi, H.. Queueing analysis. A foundation of performance evaluation. Volume
1: Vacation and priority systems, part 1. North-Holland, Amsterdam. 1991.
[86] Takagi, H.. Queueing analysis. A foundation of performance evaluation. Volume
2: Finite Systems. North-Holland, Amsterdam. 1993.
[87] Takagi, H.. Queueing analysis. A foundation of performance evaluation. Volume
3: Discrete-Time Systems. North-Holland, Amsterdam. 1993.
[88] Takács, L.. Introduction to the theory of queues. Oxford University Press, New York. 1962.
[89] Takács, L.. Combinatorial Methods in the Theory of Stochastic
Processes. John Wiley & Sons. 1977.
[90] Tijms, H.. Stochastic Modelling and Analysis: A Computational
Approach. Wiley & Sons, New York. 1986.
[91] Tijms, H. A first course in stochastic models. Wiley & Son, Chichester. 2003.
[92] Tomkó, J. On sojourn times for semi-Markov processes. Proceeding of the 14th European Meeting of Statisticians,
Wroclaw. 1981.
[93] Tomkó, J.. Sojourn time problems for Markov chains ( in Hungarian ). Alkalmazott Matematikai Lapok. 1982. 91–106.
[94] Trivedi, K.. Probability and Statistics with Reliability, Queuing, and
Computer Science Applications, 2-nd edition. Wiley & Son, New York. 2002.
[95] Ushakov, I. A. and Harrison, R. A.. Handbook of reliability engineering. Transl. from the Russian.
Updated ed. John Wiley & Sons, New York, NY. 1994.
[96] van Hoorn, M.. Algorithms and approximations for queueing systems. Centrum voor Wiskunde en Informatica,
Amsterdam. 1984.
[98] Wentzel, E. and Ovcharov, L.. Applied problems in probabbility theory. Mir Publisher, Moscow. 1986.
[99] White, J.. Analysis of queueing systems. Academic Press, New York. 1975.
[100] Wolf, R.. Stochastic Modeling and the Theory of Queues. Prentice-Hall. 1989.
[101] Yashkov, S.. Processor-sharing queues: some progress in analysis. Queueing
Systems: Theory and Applications. 1987. 1–17.