F. függelék - Irodalomjegyzék

[40] J. T. L. Wang, M. J. Zaki, H. Toivonen, and D. E. Shasha, editors. Data Mining in Bioinformatics. Springer, September 2004.

[87] S. K. Card, J. D. MacKinlay, and B. Shneiderman, editors. Readings in Information Visualization: Using Vision to Think. Morgan Kaufmann Publishers, San Francisco, CA, January 1999.

[4154] Agarwal, R. C. and Aggarwal, C. C. and Prasad, V. V. V. A Tree Projection Algorithm for Generation of Frequent Itemsets. Journal of Parallel and Distributed Computing (Special Issue on High Performance Data Mining), 61(3):350--371, 2001.

[4154] Agarwal, R. C. and Aggarwal, C. C. and Prasad, V. V. V. A Tree Projection Algorithm for Generation of Frequent Itemsets. Journal of Parallel and Distributed Computing (Special Issue on High Performance Data Mining), 61(3):350--371, 2001.

[4154] Agarwal, R. C. and Aggarwal, C. C. and Prasad, V. V. V. A Tree Projection Algorithm for Generation of Frequent Itemsets. Journal of Parallel and Distributed Computing (Special Issue on High Performance Data Mining), 61(3):350--371, 2001.

[4154] Agarwal, R. C. and Aggarwal, C. C. and Prasad, V. V. V. A Tree Projection Algorithm for Generation of Frequent Itemsets. Journal of Parallel and Distributed Computing (Special Issue on High Performance Data Mining), 61(3):350--371, 2001.

[4154] Agarwal, R. C. and Aggarwal, C. C. and Prasad, V. V. V. A Tree Projection Algorithm for Generation of Frequent Itemsets. Journal of Parallel and Distributed Computing (Special Issue on High Performance Data Mining), 61(3):350--371, 2001.

[4154] Agarwal, R. C. and Aggarwal, C. C. and Prasad, V. V. V. A Tree Projection Algorithm for Generation of Frequent Itemsets. Journal of Parallel and Distributed Computing (Special Issue on High Performance Data Mining), 61(3):350--371, 2001.

[4154] Agarwal, R. C. and Aggarwal, C. C. and Prasad, V. V. V. A Tree Projection Algorithm for Generation of Frequent Itemsets. Journal of Parallel and Distributed Computing (Special Issue on High Performance Data Mining), 61(3):350--371, 2001.

[4154] Agarwal, R. C. and Aggarwal, C. C. and Prasad, V. V. V. A Tree Projection Algorithm for Generation of Frequent Itemsets. Journal of Parallel and Distributed Computing (Special Issue on High Performance Data Mining), 61(3):350--371, 2001.

[4154] Agarwal, R. C. and Aggarwal, C. C. and Prasad, V. V. V. A Tree Projection Algorithm for Generation of Frequent Itemsets. Journal of Parallel and Distributed Computing (Special Issue on High Performance Data Mining), 61(3):350--371, 2001.

[4154] Agarwal, R. C. and Aggarwal, C. C. and Prasad, V. V. V. A Tree Projection Algorithm for Generation of Frequent Itemsets. Journal of Parallel and Distributed Computing (Special Issue on High Performance Data Mining), 61(3):350--371, 2001.

[4651] Agarwal, R. C. and Shafer, J. C. Parallel Mining of Association Rules. IEEE Transactions on Knowledge and Data Engineering, 8(6):962--969, 1998.

[4652] Aggarwal, C. C. and Sun, Z. and Yu, P. S. Online Generation of Profile Association Rules. KDD98, pages 129--133, New York, NY, 1996.

[4653] Aggarwal, C. C. and Yu, P. S. Mining Associations with the Collective Strength Approach. IEEE Trans. on Knowledge and Data Engineering, 13(6):863--873, 2001.

[4654] Aggarwal, C. C. and Yu, P. S. Mining Large Itemsets for Association Rules. Data Engineering Bulletin, 21(1):23--31, 1998.

[4629] Agrawal, R. and Imielinski, T. and Swami, A. Database mining: A performance perspective. IEEE Transactions on Knowledge and Data Engineering, 5:914--925, 1993.

[4655] Agrawal, R. and Imielinski, T. and Swami, A. Mining association rules between sets of items in large databases. Proc. ACM SIGMOD Intl. Conf. Management of Data, pages 207--216, Washington, DC, 1993.

[4656] Agrawal, R. and Srikant, R. Mining Sequential Patterns. Proc. of Intl. Conf. on Data Engineering, pages 3--14, Taipei, Taiwan, 1995.

[4657] Aha, D. W. A study of instance-based algorithms for supervised learning tasks: mathematical, empirical, and psychological evaluations. PhD thesis, University of California, Irvine, 1990.

[4658] Ali, K. and Manganaris, S. and Srikant, R. Partial Classification using Association Rules. KDD97, pages 115--118, Newport Beach, CA, 1997.

[4679] Allwein, E. L. and Schapire, R. E. and Singer, Y. Reducing Multiclass to Binary: A Unifying Approach to Margin Classifiers. Journal of Machine Learning Research, 1:113--141, 2000.

[4659] Alsabti, K. and Ranka, S. and Singh, V. CLOUDS: A Decision Tree Classifier for Large Datasets. KDD98, pages 2--8, New York, NY, 1998.

[4510] Andrews, R. and Diederich, J. and Tickle, A. A Survey and Critique of Techniques For Extracting Rules From Trained Artificial Neural Networks. Knowledge Based Systems, 8(6):373--389, 1995.

[4680] Antonie, M-L. and Zaďane, O. R. Mining Positive and Negative Association Rules: An Approach for Confined Rules. PKDD04, pages 27--38, Pisa, Italy, 2004.

[4660] Aumann, Y. and Lindell, Y. A Statistical Theory for Quantitative Association Rules. KDD99, pages 261--270, San Diego, CA, 1999.

[4683] Ayres, J. and Flannick, J. and Gehrke, J. and Yiu, T. Sequential Pattern mining using a bitmap representation. KDD02, pages 429-435, Edmonton, Canada, 2002.

[4684] Barbará, D. and Couto, J. and Jajodia, S. and Wu, N. ADAM: A Testbed for Exploring the Use of Data Mining in Intrusion Detection. SIGMOD Record, 30(4):15--24, 2001.

[4685] Bay, S. D. and Pazzani, M. Detecting Group Differences: Mining Contrast Sets. Data Mining and Knowledge Discovery, 5(3):213--246, 2001.

[4686] Bayardo, R. Efficiently Mining Long Patterns from Databases. SIGMOD98, pages 85--93, Seattle, WA, 1998.

[4687] Bayardo, R. and Agrawal, R. Mining the Most Interesting Rules. KDD99, pages 145--153, San Diego, CA, 1999.

[4688] Benjamini, Y. and Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal Royal Statistical Society B, 57(1):289--300, 1995.

[4691] Bennett, K. and Campbell, C. Support Vector Machines: Hype or Hallelujah. SIGKDD Explorations, 2(2):1--13, 2000.

[4692] Berry, M. J. A. and Linoff, G. Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management. Wiley Computer Publishing, 2nd edition, 2004.

[4693] Bishop, C. M. Neural Networks for Pattern Recognition. Oxford University Press, Oxford, U.K., 1995.

[4694] Bolton, R. J. and Hand, D. J. and Adams, N. M. Determining Hit Rate in Pattern Search. Proc. of the ESF Exploratory Workshop on Pattern Detection and Discovery in Data Mining, pages 36--48, London, UK, 2002.

[4695] Boulicaut, J-F. and Bykowski, A. and Jeudy, B. Towards the Tractable Discovery of Association Rules with Negations. Proc. of the 4th Intl. Conf on Flexible Query Answering Systems FQAS'00, pages 425--434, Warsaw, Poland, 2000.

[4696] Bradley, A. P. The use of the area under the ROC curve in the Evaluation of Machine Learning Algorithms. Pattern Recognition, 30(7):1145--1149, 1997.

[4697] Paul S. Bradley and Johannes Gehrke and Raghu Ramakrishnan and Ramakrishnan Srikant. Scaling mining algorithms to large databases. Communications of the ACM, 45(8):38-43, 2002.

[4698] Breiman, L. Bagging Predictors. Machine Learning, 24(2):123--140, 1996.

[4699] Breiman, L. Bias, Variance, and Arcing Classifiers. Technical report, 486, University of California, Berkeley, CA, 1996.

[4700] Breiman, L. Random Forests. Machine Learning, 45(1):5--32, 2001.

[4701] Breiman, L. and Friedman, J. H. and Olshen, R. and Stone, C. J. Classification and Regression Trees. Chapman & Hall, New York, 1984.

[4689] Breslow, L. A. and Aha, D. W. Simplifying Decision Trees: A Survey. Knowledge Engineering Review, 12(1):1--40, 1997.

[4702] Brin, S. and Motwani, R. and Silverstein, C. Beyond market baskets: Generalizing association rules to correlations. Proc. ACM SIGMOD Intl. Conf. Management of Data, pages 265--276, Tucson, AZ, 1997.

[4703] Brin, S. and Motwani, R. and Ullman, J. and Tsur, S. Dynamic Itemset Counting and Implication Rules for market basket data. SIGMOD97, pages 255--264, Tucson, AZ, 1997.

[4704] Buntine, W. Learning classification trees. In Hand, D. J., editors, Artificial Intelligence Frontiers in Statistics, pages 182--201, 1993. Chapman & Hall, London.

[4705] Burges, C. J. C. A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 2(2):121--167, 1998.

[4706] Cai, C. H. and Fu, A. and Cheng, C. H. and Kwong, W. W. Mining Association Rules with Weighted Items. Proc. of IEEE Intl. Database Engineering and Applications Symp., pages 68--77, Cardiff, Wales, 1998.

[4707] Cant u' -Paz, E. and Kamath, C. Using evolutionary algorithms to induce oblique decision trees. Proc. of the Genetic and Evolutionary Computation Conf., pages 1053--1060, San Francisco, CA, 2000.

[4708] Chakrabarti, S. Mining the Web: Discovering Knowledge from Hypertext Data. Morgan Kaufmann, San Francisco, CA, 2003.

[4709] Chawla, N. V. and Bowyer, K. W. and Hall, L. O. and Kegelmeyer, W. P. SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16:321--357, 2002.

[4710] Chawla, N. V. and Japkowicz, N. and Kolcz, A. Editorial: Special Issue on Learning from Imbalanced Data Sets. SIGKDD Explorations, 6(1):1--6, 2004.

[4711] Chen, Q. and Dayal, U. and Hsu, M. A Distributed OLAP infrastructure for E-Commerce. Proc. of the 4th IFCIS Intl. Conf. on Cooperative Information Systems, pages 209--220, Edinburgh, Scotland, 1999.

[4712] Cheng, H. and Yan, X. and Han, J. IncSpan: incremental mining of sequential patterns in large database. KDD04, pages 527-532, Seattle, WA, 2004.

[4713] Cherkassky, V. and Mulier, F. Learning from Data: Concepts, Theory, and Methods. Wiley Interscience, 1998.

[4714] Cheung, D. C. and Lee, S. D. and Kao, B. A General Incremental Technique for Maintaining Discovered Association Rules. Proc. of the 5th Intl. Conf. on Database Systems for Advanced Applications, pages 185--194, Melbourne, Australia, 1997.

[4715] Clark, P. and Boswell, R. Rule Induction with CN2: Some Recent Improvements. Machine Learning: Proc. of the 5th European Conf. (EWSL-91), pages 151--163, 1991.

[4716] Clark, P. and Niblett, T. The CN2 Induction Algorithm. Machine Learning, 3(4):261--283, 1989.

[4717] Cohen, W. W. Fast Effective Rule Induction. ICML95, pages 115--123, Tahoe City, CA, 1995.

[4718] Cooley, R. and Tan, P. N. and Srivastava, J. Discovery of Interesting Usage Patterns from Web Data. In Spiliopoulou, M. and Masand, B., editors, Advances in Web Usage Analysis and User Profiling, pages 163--182. Lecture Notes in Computer Science, 2000.

[4719] Cost, S. and Salzberg, S. A Weighted Nearest Neighbor Algorithm for Learning with Symbolic Features. Machine Learning, 10:57--78, 1993.

[4720] Cover, T. M. and Hart, P. E. Nearest Neighbor Pattern Classification. Knowledge Based Systems, 8(6):373--389, 1995.

[4721] Cristianini, N. and Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, 2000.

[4722] Dietterich, T. G. Ensemble Methods in Machine Learning. First Intl. Workshop on Multiple Classifier Systems, Cagliari, Italy, 2000.

[4723] Dietterich, T. G. and Bakiri, G. Solving Multiclass Learning Problems via Error-Correcting Output Codes. Journal of Artificial Intelligence Research, 2:263--286, 1995.

[4724] Dokas, P. and Ertöz, L. and Kumar, V. and Lazarevic, A. and Srivastava, J. and Tan, P. N. Data Mining for Network Intrusion Detection. Proc. NSF Workshop on Next Generation Data Mining, Baltimore, MD, 2002.

[4725] Domingos, P. MetaCost: A General Method for Making Classifiers Cost-Sensitive. KDD99, pages 155--164, San Diego, CA, 1999.

[4726] Domingos, P. The RISE system: Conquering without separating. Proc. of the 6th IEEE Intl. Conf. on Tools with Artificial Intelligence, pages 704--707, New Orleans, LA, 1994.

[4727] Domingos, P. The Role of Occam's Razor in Knowledge Discovery. Data Mining and Knowledge Discovery, 3(4):409--425, 1999.

[4728] Domingos, P. and Pazzani, M. On the Optimality of the Simple Bayesian Classifier under Zero-One Loss. Machine Learning, 29(2-3):103--130, 1997.

[4729] Dong, G. and Li, J. Efficient Mining of Emerging Patterns: Discovering Trends and Differences. KDD99, pages 43--52, San Diego, CA, 1999.

[4730] Dong, G. and Li, J. Interestingness of discovered association rules in terms of neighborhood-based unexpectedness. PAKDD98, pages 72--86, Melbourne, Australia, 1998.

[4731] Drummond, C. and Holte, R. C. C4.5, Class imbalance, and Cost sensitivity: Why under-sampling beats over-sampling. ICML'2004 Workshop on Learning from Imbalanced Data Sets II, Washington, DC, 2003.

[4732] Duda, R. O. and Hart, P. E. and Stork, D. G. Pattern Classification. John Wiley & Sons, Inc., New York, 2nd edition, 2001.

[4733] DuMouchel, W. and Pregibon, D. Empirical Bayes Screening for Multi-Item Associations. KDD01, pages 67--76, San Francisco, CA, 2001.

[4734] Dunham, M. H. Data Mining: Introductory and Advanced Topics. Prentice Hall, 2002.

[4735] Dunkel, B. and Soparkar, N. Data Organization and Access for Efficient Data Mining. ICDE99, pages 522--529, Sydney, Australia, 1999.

[4736] Efron, B. and Tibshirani, R. Cross-validation and the Bootstrap: Estimating the Error Rate of a Prediction Rule. Technical report, Stanford University, 1995.

[4737] Elkan, C. The Foundations of Cost-Sensitive Learning. Proc. of the 17th Intl. Joint Conf. on Artificial Intelligence, pages 973--978, Seattle, WA, 2001.

[4738] Esposito, F. and Malerba, D. and Semeraro, G. A Comparative Analysis of Methods for Pruning Decision Trees. IEEE Trans. Pattern Analysis and Machine Intelligence, 19(5):476--491, 1997.

[4739] F u ¨ rnkranz, J. and Widmer, G. Incremental reduced error pruning. ICML94, pages 70--77, New Brunswick, NJ, 1994.

[4740] Fabris, C. C. and Freitas, A. A. Discovering surprising patterns by detecting occurrences of Simpson's paradox. Proc. of the 19th SGES Intl. Conf. on Knowledge-Based Systems and Applied Artificial Intelligence), pages 148--160, Cambridge, UK, 1999.

[4741] Fan, W. and Stolfo, S. J. and Zhang, J. and Chan, P. K. AdaCost: misclassification cost-sensitive boosting. ICML99, pages 97--105, Bled, Slovenia, 1999.

[4742] Usama M. Fayyad and Gregory Piatetsky-Shapiro and Padhraic Smyth. From Data Mining to Knowledge Discovery: An Overview. Advances in Knowledge Discovery and Data Mining, pages 1-34. AAAI Press, 1996.

[4743] Feng, L. and Lu, H. J. and Yu, J. X. and Han, J. Mining inter-transaction associations with templates. CIKM99, pages 225--233, Kansas City, Missouri, 1999.

[4744] Ferri, C. and Flach, P. and Hernandez-Orallo, J. Learning Decision Trees Using the Area Under the ROC Curve. ICML02, pages 139--146, Sydney, Australia, 2002.

[4745] Fisher, R. A. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7:179--188, 1936.

[4746] Freitas, A. A. Understanding the crucial differences between classification and discovery of association rules---a position paper. SIGKDD Explorations, 2(1):65--69, 2000.

[4747] Freund, Y. and Schapire, R. E. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119--139, 1997.

[4748] Friedman, J. H. Data Mining and Statistics: What's the Connection?. Unpublished. www-stat.stanford.edu/ : jhf/ftp/dm-stat.ps, 1997.

[4749] Friedman, J. H. and Fisher, N. I. Bump hunting in high-dimensional data. Statistics and Computing, 9(2):123--143, 1999.

[4750] Fukuda, T. and Morimoto, Y. and Morishita, S. and Tokuyama, T. Mining Optimized Association Rules for Numeric Attributes. PODS96, pages 182--191, Montreal, Canada, 1996.

[4751] Fukunaga, K. Introduction to Statistical Pattern Recognition. Academic Press, New York, 1990.

[4752] Garofalakis, M. N. and Rastogi, R. and Shim, K. SPIRIT: Sequential Pattern Mining with Regular Expression Constraints. VLDB99, pages 223--234, Edinburgh, Scotland, 1999.

[4753] Gehrke, J. and Ramakrishnan, R. and Ganti, V. RainForest---A Framework for Fast Decision Tree Construction of Large Datasets. Data Mining and Knowledge Discovery, 4(2/3):127--162, 2000.

[4754] Clark Glymour and David Madigan and Daryl Pregibon and Padhraic Smyth. Statistical Themes and Lessons for Data Mining. Data Mining and Knowledge Discovery, 1(1):11--28, 1997.

[4755] Robert L. Grossman and Mark F. Hornick and Gregor Meyer. Data mining standards initiatives. Communications of the ACM, 45(8):59-61, 2002.

[4756] Gunopulos, D. and Khardon, R. and Mannila, H. and Toivonen, H. Data Mining, Hypergraph Transversals, and Machine Learning. PODS97, pages 209--216, Tucson, AZ, 1997.

[4757] Han, E.-H. and Karypis, G. and Kumar, V. Min-Apriori: An Algorithm for Finding Association Rules in Data with Continuous Attributes. http://www.cs.umn.edu/han, 1997.

[4758] Han, E.-H. and Karypis, G. and Kumar, V. Scalable Parallel Data Mining for Association Rules. SIGMOD97, pages 277--288, Tucson, AZ, 1997.

[4759] Han, E.-H. and Karypis, G. and Kumar, V. Text Categorization Using Weight Adjusted k-Nearest Neighbor Classification. PAKDD01, Lyon, France, 2001.

[4760] Han, E.-H. and Karypis, G. and Kumar, V. and Mobasher, B. Clustering Based on Association Rule Hypergraphs. DMKD97, Tucson, AZ, 1997.

[4761] Han, J. and Fu, Y. Mining Multiple-Level Association Rules in Large Databases. IEEE Trans. on Knowledge and Data Engineering, 11(5):798--804, 1999.

[4762] Han, J. and Fu, Y. and Koperski, K. and Wang, W. and Zaďane, O. R. DMQL: A data mining query language for relational databases. DMKD96, Montreal, Canada, 1996.

[4763] Han, J. and Kamber, M. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, San Francisco, 2001.

[4764] Han, J. and Pei, J. and Yin, Y. Mining Frequent Patterns without Candidate Generation. Proc. ACM-SIGMOD Int. Conf. on Management of Data (SIGMOD'00), pages 1--12, Dallas, TX, 2000.

[4765] Jiawei Han and Russ B. Altman and Vipin Kumar and Heikki Mannila and Daryl Pregibon. Emerging scientific applications in data mining. Communications of the ACM, 45(8):54-58, 2002.

[4766] Hand, D. J. Data Mining: Statistics and More?. The American Statistician, 52(2):112--118, 1998.

[4767] Hand, D. J. and Mannila, H. and Smyth, P. Principles of Data Mining. MIT Press, 2001.

[4768] Hastie, T. and Tibshirani, R. Classification by pairwise coupling. Annals of Statistics, 26(2):451--471, 1998.

[4769] Hastie, T. and Tibshirani, R. and Friedman, J. H. The Elements of Statistical Learning: Data Mining, Inference, Prediction. Springer, New York, 2001.

[4770] Hearst, M. Trends & Controversies: Support Vector Machines. IEEE Intelligent Systems, 13(4):18--28, 1998.

[4771] Heath, D. and Kasif, S. and Salzberg, S. Induction of Oblique Decision Trees. Proc. of the 13th Intl. Joint Conf. on Artificial Intelligence, pages 1002--1007, Chambery, France, 1993.

[4772] Heckerman, D. Bayesian Networks for Data Mining. Data Mining and Knowledge Discovery, 1(1):79--119, 1997.

[4773] Hidber, C. Online Association Rule Mining. SIGMOD99, pages 145--156, Philadelphia, PA, 1999.

[4774] Hilderman, R. J. and Hamilton, H. J. Knowledge Discovery and Measures of Interest. Kluwer Academic Publishers, 2001.

[4775] Hipp, J. and Guntzer, U. and Nakhaeizadeh, G. Algorithms for Association Rule Mining---A General Survey. SigKDD Explorations, 2(1):58--64, 2000.

[4776] Hofmann, H. and Siebes, A. P. J. M. and Wilhelm, A. F. X. Visualizing Association Rules with Interactive Mosaic Plots. KDD00, pages 227--235, Boston, MA, 2000.

[4777] Holt, J. D. and Chung, S. M. Efficient Mining of Association Rules in Text Databases. CIKM99, pages 234--242, Kansas City, Missouri, 1999.

[4778] Holte, R. C. Very Simple Classification Rules Perform Well on Most Commonly Used Data sets. Machine Learning, 11:63--91, 1993.

[4779] Houtsma, M. and Swami, A. Set-oriented Mining for Association Rules in Relational Databases. ICDE95, pages 25--33, Taipei, Taiwan, 1995.

[4780] Huang, Y. and Shekhar, S. and Xiong, H. Discovering Co-location Patterns from Spatial Datasets: A General Approach. IEEE Trans. on Knowledge and Data Engineering, 16(12):1472--1485, 2004.

[4781] Imielinski, T. and Virmani, A. and Abdulghani, A. DataMine: Application Programming Interface and Query Language for Database Mining. KDD96, pages 256--262, Portland, Oregon, 1996.

[4782] Inokuchi, A. and Washio, T. and Motoda, H. An Apriori-based Algorithm for Mining Frequent Substructures from Graph Data. PKDD00, pages 13--23, Lyon, France, 2000.

[4783] Jain, A. K. and Duin, R. P. W. and Mao, J. Statistical Pattern Recognition: A Review. IEEE Tran. Patt. Anal. and Mach. Intellig., 22(1):4--37, 2000.

[4784] Japkowicz, N. The Class Imbalance Problem: Significance and Strategies. Proc. of the 2000 Intl. Conf. on Artificial Intelligence: Special Track on Inductive Learning, pages 111--117, Las Vegas, NV, 2000.

[4785] Jaroszewicz, S. and Simovici, D. Interestingness of Frequent Itemsets Using Bayesian Networks as Background Knowledge. KDD04, pages 178--186, Seattle, WA, 2004.

[4786] Jensen, D. and Cohen, P. R. Multiple Comparisons in Induction Algorithms. Machine Learning, 38(3):309--338, 2000.

[4787] Joshi, M. V. On Evaluating Performance of Classifiers for Rare Classes. ICDM02, Maebashi City, Japan, 2002.

[4788] Joshi, M. V. and Agarwal, R. C. and Kumar, V. Mining Needles in a Haystack: Classifying Rare Classes via Two-Phase Rule Induction. SIGMOD01, pages 91-102, Santa Barbara, CA, 2001.

[4789] Joshi, M. V. and Agarwal, R. C. and Kumar, V. Predicting rare classes: can boosting make any weak learner strong?. KDD02, pages 297-306, Edmonton, Canada, 2002.

[4790] Joshi, M. V. and Karypis, G. and Kumar, V. A Universal Formulation of Sequential Patterns. Proc. of the KDD'2001 workshop on Temporal Data Mining, San Francisco, CA, 2001.

[4791] Joshi, M. V. and Karypis, G. and Kumar, V. ScalParC: A New Scalable and Efficient Parallel Classification Algorithm for Mining Large Datasets. Proc. of 12th Intl. Parallel Processing Symp. (IPPS/SPDP), pages 573-579, Orlando, FL, 1998.

[4792] Joshi, M. V. and Kumar, V. CREDOS: Classification Using Ripple Down Structure (A Case for Rare Classes). SDM04, pages 321-332, Orlando, FL, 2004.

[4793] Kamber, M. and Shinghal, R. Evaluating the Interestingness of Characteristic Rules. KDD96, pages 263--266, Portland, Oregon, 1996.

[4794] Kantardzic, M. Data Mining: Concepts, Models, Methods, and Algorithms. Wiley-IEEE Press, Piscataway, NJ, 2003.

[4795] Kass, G. V. An Exploratory Technique for Investigating Large Quantities of Categorical Data. Applied Statistics, 29:119--127, 1980.

[4796] Kim, B. and Landgrebe, D. Hierarchical decision classifiers in high-dimensional and large class data. IEEE Trans. on Geoscience and Remote Sensing, 29(4):518--528, 1991.

[4797] Klemettinen, M. A Knowledge Discovery Methodology for Telecommunication Network Alarm Databases. PhD thesis, University of Helsinki, 1999.

[4798] Kohavi, R. A Study on Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. Proc. of the 15th Intl. Joint Conf. on Artificial Intelligence, pages 1137--1145, Montreal, Canada, 1995.

[4799] Kong, E. B. and Dietterich, T. G. Error-Correcting Output Coding Corrects Bias and Variance. ICML95, pages 313--321, Tahoe City, CA, 1995.

[4800] Kosters, W. A. and Marchiori, E. and Oerlemans, A. Mining Clusters with Association Rules. The 3rd Symp. on Intelligent Data Analysis (IDA99), pages 39--50, Amsterdam, 1999.

[4801] Kubat, M. and Matwin, S. Addressing the Curse of Imbalanced Training Sets: One Sided Selection. ICML97, pages 179--186, Nashville, TN, 1997.

[4802] Kulkarni, S. R. and Lugosi, G. and Venkatesh, S. S. Learning Pattern Classification---A Survey. IEEE Tran. Inf. Theory, 44(6):2178--2206, 1998.

[4803] Kumar, V. and Joshi, M. V. and Han, E.-H. and Tan, P. N. and Steinbach, M. High Performance Data Mining. High Performance Computing for Computational Science (VECPAR 2002), pages 111-125. Springer, 2002.

[4804] Kuok, C. M. and Fu, A. and Wong, M. H. Mining Fuzzy Association Rules in Databases. ACM SIGMOD Record, 27(1):41--46, 1998.

[4805] Kuramochi, M. and Karypis, G. Discovering Frequent Geometric Subgraphs. ICDM02, pages 258--265, Maebashi City, Japan, 2002.

[4806] Kuramochi, M. and Karypis, G. Frequent Subgraph Discovery. ICDM01, pages 313--320, San Jose, CA, 2001.

[4807] Diane Lambert. What Use is Statistics for Massive Data?. ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, pages 54-62, 2000.

[4808] Landeweerd, G. and Timmers, T. and Gersema, E. and Bins, M. and Halic, M. Binary tree versus single level tree classification of white blood cells. Pattern Recognition, 16:571--577, 1983.

[4809] Langley, P. and Iba, W. and Thompson, K. An analysis of Bayesian classifiers. Proc. of the 10th National Conf. on Artificial Intelligence, pages 223--228, 1992.

[4810] Lee, W. and Stolfo, S. J. and Mok, K. W. Adaptive Intrusion Detection: A Data Mining Approach. Artificial Intelligence Review, 14(6):533--567, 2000.

[4811] Lent, B. and Swami, A. and Widom, J. Clustering Association Rules. ICDE97, pages 220--231, Birmingham, U.K, 1997.

[4812] Lewis, D. D. Naive Bayes at Forty: The Independence Assumption in Information Retrieval. Proc. of the 10th European Conf. on Machine Learning (ECML 1998), pages 4--15, 1998.

[4813] Li, W. and Han, J. and Pei, J. CMAR: Accurate and Efficient Classification Based on Multiple Class-association Rules. ICDM01, pages 369--376, San Jose, CA, 2001.

[4814] Liu, B. and Hsu, W. and Chen, S. Using General Impressions to Analyze Discovered Classification Rules. KDD97, pages 31--36, Newport Beach, CA, 1997.

[4815] Liu, B. and Hsu, W. and Ma, Y. Integrating Classification and Association Rule Mining. KDD98, pages 80--86, New York, NY, 1998.

[4816] Liu, B. and Hsu, W. and Ma, Y. Mining association rules with multiple minimum supports. KDD99, pages 125--134, San Diego, CA, 1999.

[4817] Liu, B. and Hsu, W. and Ma, Y. Pruning and Summarizing the Discovered Associations. KDD99, pages 125--134, San Diego, CA, 1999.

[4818] Mangasarian, O. Data Mining via Support Vector Machines. Technical report, Technical Report 01-05, Data Mining Institute, 2001.

[4819] Mannila, H. and Toivonen, H. and Verkamo, A. I. Discovery of Frequent Episodes in Event Sequences. Data Mining and Knowledge Discovery, 1(3):259--289, 1997.

[4820] Marcus, A. and Maletic, J. I. and Lin, K.-I. Ordinal association rules for error identification in data sets. CIKM01, pages 589--591, Atlanta, GA, 2001.

[4821] Margineantu, D. D. and Dietterich, T. G. Learning Decision Trees for Loss Minimization in Multi-Class Problems.Technical report, 99-30-03, Oregon State University, 1999.

[4822] Megiddo, N. and Srikant, R. Discovering Predictive Association Rules. KDD98, pages 274--278, New York, 1998.

[4823] Mehta, M. and Agrawal, R. and Rissanen, J. SLIQ: A Fast Scalable Classifier for Data Mining. Proc. of the 5th Intl. Conf. on Extending Database Technology, pages 18--32, Avignon, France, 1996.

[4824] Meo, R. and Psaila, G. and Ceri, S. A New SQL-like Operator for Mining Association Rules. VLDB96, pages 122--133, Bombay, India, 1996.

[4825] Michalski, R. S. A theory and methodology of inductive learning. Artificial Intelligence, 20:111--116, 1983.

[4826] Michalski, R. S. and Mozetic, I. and Hong, J. and Lavrac, N. The Multi-Purpose Incremental Learning System AQ15 and Its Testing Application to Three Medical Domains. Proc. of 5th National Conf. on Artificial Intelligence, Orlando, 1986.

[4827] Michie, D. and Spiegelhalter, D. J. and Taylor, C. C. Machine Learning, Neural and Statistical Classification. Ellis Horwood, Upper Saddle River, NJ, 1994.

[4828] Miller, R. J. and Yang, Y. Association Rules over Interval Data. SIGMOD97, pages 452--461, Tucson, AZ, 1997.

[4829] Mingers, J. An empirical comparison of pruning methods for decision tree induction. Machine Learning, 4:227--243, 1989.

[4830] Mingers, J. Expert Systems---Rule Induction with Statistical Data. J Operational Research Society, 38:39--47, 1987.

[4831] Mitchell, T. Machine Learning. McGraw-Hill, Boston, MA, 1997.

[4832] Moret, B. M. E. Decision Trees and Diagrams. Computing Surveys, 14(4):593--623, 1982.

[4833] Morimoto, Y. and Fukuda, T. and Matsuzawa, H. and Tokuyama, T. and Yoda, K. Algorithms for mining association rules for binary segmentations of huge categorical databases. VLDB98, pages 380--391, New York, 1998.

[4834] Mosteller, F. Association and Estimation in Contingency Tables. Journal of the American Statistical Association, 63:1--28, 1968.

[4835] Mueller, A. Fast sequential and parallel algorithms for association rule mining: A comparison. Technical report, CS-TR-3515, University of Maryland, 1995.

[4836] Muggleton, S. Foundations of Inductive Logic Programming. Prentice Hall, Englewood Cliffs, NJ, 1995.

[4837] Murthy, S. K. Automatic Construction of Decision Trees from Data: A Multi-Disciplinary Survey. Data Mining and Knowledge Discovery, 2(4):345--389, 1998.

[4838] Murthy, S. K. and Kasif, S. and Salzberg, S. A system for induction of oblique decision trees. J of Artificial Intelligence Research, 2:1--33, 1994.

[4839] Ng, R. T. and Lakshmanan, L. V. S. and Han, J. and Pang, A. Exploratory Mining and Pruning Optimizations of Constrained Association Rules. SIGMOD98, pages 13--24, Seattle, WA, 1998.

[4840] Niblett, T. Constructing decision trees in noisy domains. Proc. of the 2nd European Working Session on Learning, pages 67--78, Bled, Yugoslavia, 1987.

[4841] Niblett, T. and Bratko, I. Learning Decision Rules in Noisy Domains. In Bramer, M., editors, Research and Development in Expert Systems III, Cambridge, 1986. Cambridge University Press.

[4842] Omiecinski, E. Alternative Interest Measures for Mining Associations in Databases. IEEE Trans. on Knowledge and Data Engineering, 15(1):57--69, 2003.

[4843] Ozden, B. and Ramaswamy, S. and Silberschatz, A. Cyclic Association Rules. DE98, pages 412--421, Orlando, FL, 1998.

[4844] Ozgur, A. and Tan, P. N. and Kumar, V. RBA: An Integrated Framework for Regression based on Association Rules. SDM04, pages 210--221, Orlando, FL, 2004.

[4845] Park, J. S. and Chen, M.-S. and Yu, P. S. An effective hash-based algorithm for mining association rules. SIGMOD Record, 25(2):175--186, 1995.

[4846] Parr Rud, O. Data Mining Cookbook: Modeling Data for Marketing, Risk and Customer Relationship Management. John Wiley & Sons, New York, NY, 2001.

[4847] Parthasarathy, S. and Coatney, M. Efficient Discovery of Common Substructures in Macromolecules. ICDM02, pages 362--369, Maebashi City, Japan, 2002.

[4848] Pasquier, N. and Bastide, Y. and Taouil, R. and Lakhal, L. Discovering frequent closed itemsets for association rules. Proc. of the 7th Intl. Conf. on Database Theory (ICDT'99), pages 398--416, Jerusalem, Israel, 1999.

[4849] Pattipati, K. R. and Alexandridis, M. G. Application of heuristic search and information theory to sequential fault diagnosis. IEEE Trans. on Systems, Man, and Cybernetics, 20(4):872--887, 1990.

[4850] Pei, J. and Han, J. and Lu, H. J. and Nishio, S. and Tang, S. H-Mine: Hyper-Structure Mining of Frequent Patterns in Large Databases. ICDM01, pages 441--448, San Jose, CA, 2001.

[4851] Pei, J. and Han, J. and Mortazavi-Asl, B. and Chen, Q. and Dayal, U. and Hsu, M. PrefixSpan: Mining Sequential Patterns efficiently by prefix-projected pattern growth. Proc of the 17th Intl. Conf. on Data Engineering, Heidelberg, Germany, 2001.

[4852] Pei, J. and Han, J. and Mortazavi-Asl, B. and Zhu, H. Mining Access Patterns Efficiently from Web Logs. PAKDD00, pages 396--407, Kyoto, Japan, 2000.

[4853] Piatetsky-Shapiro, G. Discovery, Analysis and Presentation of Strong Rules. In G. Piatetsky-Shapiro and W. Frawley, editors, Knowledge Discovery in Databases, pages 229--248. MIT Press, Cambridge, MA, 1991.

[4854] Potter, C. and Klooster, S. and Steinbach, M. and Tan, P. N. and Kumar, V. and Shekhar, S. and Carvalho, C. Understanding Global Teleconnections of Climate to Regional Model Estimates of Amazon Ecosystem Carbon Fluxes. Global Change Biology, 10(5):693--703, 2004.

[4855] Potter, C. and Klooster, S. and Steinbach, M. and Tan, P. N. and Kumar, V. and Shekhar, S. and Myneni, R. and Nemani, R. Global Teleconnections of Ocean Climate to Terrestrial Carbon Flux. J. Geophysical Research, 108(D17), 2003.

[4856] Provost, F. J. and Fawcett, T. Analysis and Visualization of Classifier Performance: Comparison under Imprecise Class and Cost Distributions. KDD97, pages 43--48, Newport Beach, CA, 1997.

[4857] Pyle, D. Business Modeling and Data Mining. Morgan Kaufmann, San Francisco, CA, 2003.

[4858] Quinlan, J. R. C4.5: Programs for Machine Learning. Morgan-Kaufmann Publishers, San Mateo, CA, 1993.

[4859] Quinlan, J. R. Discovering rules by induction from large collection of examples. In Michie, D., editors, Expert Systems in the Micro Electronic Age. Edinburgh University Press, Edinburgh, UK, 1979.

[4860] Quinlan, J. R. Simplifying Decision Trees. Intl. J. Man-Machine Studies, 27:221--234, 1987.

[4861] Quinlan, J. R. and Rivest, R. L. Inferring Decision Trees Using the Minimum Description Length Principle. Information and Computation, 80(3):227--248, 1989.

[4862] Naren Ramakrishnan and Ananth Grama. Data Mining: From Serendipity to Science---Guest Editors' Introduction. IEEE Computer, 32(8):34-37, 1999.

[4863] Ramkumar, G. D and Ranka, S. and Tsur, S. Weighted Association Rules: Model and Algorithm. http://www.cs.ucla.edu/czdemo/tsur/, 1997.

[4864] Ramoni, M. and Sebastiani, P. Robust Bayes classifiers. Artificial Intelligence, 125:209--226, 2001.

[4865] van Rijsbergen, C. J. Information Retrieval. Butterworth-Heinemann, Newton, MA, 1978.

[4866] Roiger, R. and Geatz, M. Data Mining: A Tutorial Based Primer. Addison-Wesley, 2002.

[4867] Safavian, S. R. and Landgrebe, D. A Survey of Decision Tree Classifier Methodology. IEEE Trans. Systems, Man and Cybernetics, 22:660--674, 1998.

[4868] Sarawagi, S. and Thomas, S. and Agrawal, R. Integrating Mining with Relational Database Systems: Alternatives and Implications. SIGMOD98, pages 343--354, Seattle, WA, 1998.

[4869] Satou, K. and Shibayama, G. and Ono, T. and Yamamura, Y. and Furuichi,E. and Kuhara, S. and Takagi, T. Finding Association Rules on Heterogeneous Genome Data. Proc. of the Pacific Symp. on Biocomputing, pages 397--408, Hawaii, 1997.

[4870] Savasere, A. and Omiecinski, E. and Navathe, S. An efficient algorithm for mining association rules in large databases. Proc. of the 21st Int. Conf. on Very Large Databases (VLDB`95), pages 432-444, Zurich, Switzerland, 1995.

[4871] A. Savasere and E. Omiecinski and S. Navathe. Mining for Strong Negative Associations in a Large Database of Customer Transactions. ICDE98, pages 494--502, Orlando, Florida, 1998.

[4872] Schaffer, C. Overfitting avoidence as bias. Machine Learning, 10:153--178, 1993.

[4873] Schapire, R. E. The Boosting Approach to Machine Learning: An Overview. MSRI Workshop on Nonlinear Estimation and Classification, 2002.

[4874] Schölkopf, B. and Smola, A. J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, 2001.

[4875] Schuermann, J. and Doster, W. A decision-theoretic approach in hierarchical classifier design. Pattern Recognition, 17:359--369, 1984.

[4876] Advances in Distributed and Parallel Knowledge Discovery. AAAI Press, 2002.

[4877] Advances in Knowledge Discovery and Data Mining.. AAAI/MIT Press, 1996.

[4878] Rakesh Agrawal and Johannes Gehrke and Dimitrios Gunopulos and Prabhakar Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. In Laura M. Haas and Ashutosh Tiwary, editors, SIGMOD98, pages 94--105, Seattle, Washington, 1998. ACM Press.

[4879] Ming-Syan Chen and Jiawei Han and Philip S. Yu. Data Mining: An Overview from a Database Perspective. IEEE Transactions on Knowledge abd Data Engineering, 8(6):866-883, 1996.

[4880] Seno, M. and Karypis, G. LPMiner: An Algorithm for Finding Frequent Itemsets Using Length-Decreasing Support Constraint. ICDM01, pages 505--512, San Jose, CA, 2001.

[4881] Seno, M. and Karypis, G. SLPMiner: An Algorithm for Finding Frequent Sequential Patterns Using Length-Decreasing Support Constraint. ICDM02, pages 418--425, Maebashi City, Japan, 2002.

[4882] Shafer, J. C. and Agrawal, R. and Mehta, M. SPRINT: A Scalable Parallel Classifier for Data Mining. VLDB96, pages 544--555, Bombay, India, 1996.

[4883] Shintani, T. and Kitsuregawa, M. Hash based parallel algorithms for mining association rules. Proc of the 4th Intl. Conf. on Parallel and Distributed Info. Systems, pages 19--30, Miami Beach, FL, 1996.

[4884] Silberschatz, A. and Tuzhilin, A. What makes patterns interesting in knowledge discovery systems. IEEE Trans. on Knowledge and Data Engineering, 8(6):970--974, 1996.

[4885] Silverstein, C. and Brin, S. and Motwani, R. Beyond market baskets: Generalizing association rules to dependence rules. Data Mining and Knowledge Discovery, 2(1):39--68, 1998.

[4886] Simpson, E.-H. The Interpretation of Interaction in Contingency Tables. Journal of the Royal Statistical Society, B(13):238--241, 1951.

[4887] Singh, L. and Chen, B. and Haight, R. and Scheuermann, P. An Algorithm for Constrained Association Rule Mining in Semi-structured Data. PAKDD99, pages 148--158, Beijing, China, 1999.

[4888] Smyth, P. and Goodman, R. M. An Information Theoretic Approach to Rule Induction from Databases. IEEE Trans. on Knowledge and Data Engineering, 4(4):301--316, 1992.

[4889] Padhraic Smyth. Breaking out of the Black-Box: Research Challenges in Data Mining. DMKD01, 2001.

[4890] Padhraic Smyth and Daryl Pregibon and Christos Faloutsos. Data-driven evolution of data mining algorithms. Communications of the ACM, 45(8):33-37, 2002.

[4891] Srikant, R. and Agrawal, R. Mining Generalized Association Rules. VLDB95, pages 407--419, Zurich, Switzerland, 1995.

[4892] Srikant, R. and Agrawal, R. Mining Quantitative Association Rules in Large Relational Tables. SIGMOD96, pages 1--12, Montreal, Canada, 1996.

[4893] Srikant, R. and Agrawal, R. Mining Sequential Patterns: Generalizations and Performance Improvements. Proc. of the 5th Intl Conf. on Extending Database Technology (EDBT'96), pages 18--32, Avignon, France, 1996.

[4894] Srikant, R. and Vu, Q. and Agrawal, R. Mining Association Rules with Item Constraints. KDD97, pages 67--73, Newport Beach, CA, 1997.

[4895] Steinbach, M. and Tan, P. N. and Kumar, V. Support Envelopes: A Technique for Exploring the Structure of Association Patterns. KDD04, pages 296--305, Seattle, WA, 2004.

[4896] Steinbach, M. and Tan, P. N. and Xiong, H. and Kumar, V. Extending the Notion of Support. KDD04, pages 689--694, Seattle, WA, 2004.

[4897] Suzuki, E. Autonomous Discovery of Reliable Exception Rules. KDD97, pages 259--262, Newport Beach, CA, 1997.

[4898] Tan, P. N. and Kumar, V. Mining Association Patterns in Web Usage Data. Proc. of the Intl. Conf. on Advances in Infrastructure for e-Business, e-Education, e-Science and e-Medicine on the Internet, L'Aquila, Italy, 2002.

[4899] Tan, P. N. and Kumar, V. and Srivastava, J. Indirect Association: Mining Higher Order Dependencies in Data. PKDD00, pages 632--637, Lyon, France, 2000.

[4900] Tan, P. N. and Kumar, V. and Srivastava, J. Selecting the Right Interestingness Measure for Association Patterns. KDD02, pages 32--41, Edmonton, Canada, 2002.

[4901] Tan, P. N. and Steinbach, M. and Kumar, V. and Klooster, S. and Potter, C. and Torregrosa, A. Finding Spatio-Temporal Patterns in Earth Science Data. KDD 2001 Workshop on Temporal Data Mining, San Francisco, CA, 2001.

[4902] Tax, D. M. J. and Duin, R. P. W. Using Two-Class Classifiers for Multiclass Classification. Proc. of the 16th Intl. Conf. on Pattern Recognition (ICPR 2002), pages 124--127, Quebec, Canada, 2002.

[4903] Teng, W. G. and Hsieh, M. J. and Chen, M.-S. On the Mining of Substitution Rules for Statistically Dependent Items. ICDM02, pages 442--449, Maebashi City, Japan, 2002.

[4904] Toivonen, H and Klemettinen, M. and Ronkainen, P. and Hatonen, K. and Mannila, H. Pruning and Grouping Discovered Association Rules. ECML-95 Workshop on Statistics, Machine Learning and Knowledge Discovery in Databases, pages 47 -- 52, Heraklion, Greece, 1995.

[4905] Toivonen, H. Sampling Large Databases for Association Rules. VLDB96, pages 134--145, Bombay, India, 1996.

[4906] Tsur, S. and Ullman, J. and Abiteboul, S. and Clifton, C. and Motwani, R. and Nestorov, S. and Rosenthal, A. Query Flocks: A Generalization of Association Rule Mining. SIGMOD98, pages 1--12, Seattle, WA, 1998.

[4907] Tung, Anthony and Lu, H. J. and Han, Jiawei and Feng, Ling. Breaking the Barrier of Transactions: Mining Inter-Transaction Association Rules. KDD99, pages 297--301, San Diego, CA, 1999.

[4908] Utgoff, P. E. and Brodley, C. E. An incremental method for finding multivariate splits for decision trees. ICML90, pages 58--65, Austin, TX, 1990.

[4909] Vapnik, V. Statistical Learning Theory. John Wiley & Sons, New York, 1998.

[4910] Vapnik, V. The Nature of Statistical Learning Theory. Springer Verlag, New York, 1995.

[4911] Wang, H. and Zaniolo, C. CMP: A Fast Decision Tree Classifier Using Multivariate Predictions. ICDE00, pages 449--460, San Diego, CA, 2000.

[4912] Wang, K. and He, Y. and Han, J. Mining Frequent Itemsets Using Support Constraints. VLDB00, pages 43--52, Cairo, Egypt, 2000.

[4913] Wang, K. and Tay, S. H. and Liu, B. Interestingness-Based Interval Merger for Numeric Association Rules. KDD98, pages 121--128, New York, NY, 1998.

[4914] Wang, Q. R. and Suen, C. Y. Large tree classifier with heuristic search and global training. IEEE Trans. on Pattern Analysis and Machine Intelligence, 9(1):91--102, 1987.

[4915] Webb, A. R. Statistical Pattern Recognition. John Wiley & Sons, 2nd edition, 2002.

[4916] Webb, G. I. Discovering associations with numeric variables. KDD01, pages 383--388, San Francisco, CA, 2001.

[4917] Webb, G. I. Preliminary investigations into statistically valid exploratory rule discovery. Proc. of the Australasian Data Mining Workshop (AusDM03), Canberra, Australia, 2003.

[4918] Weiss, G. M. Mining with Rarity: A Unifying Framework. SIGKDD Explorations, 6(1):7--19, 2004.

[4919] Witten, I. H. and Frank, E. Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, 1999.

[4920] Wu, X. and Zhang, C. and Zhang, S. Mining Both Positive and Negative Association Rules. ACM Trans. on Information Systems, 22(3):381--405, 2004.

[4921] Xindong Wu and Philip S. Yu and Gregory Piatetsky-Shapiro. Data Mining: How Research Meets Practical Development?. Knowledge and Information Systems, 5(2):248-261, 2003.

[4922] Xiong, H. and He, X. and Ding, C. and Zhang, Y. and Kumar, V. and Holbrook, S. R. Identification of Functional Modules in Protein Complexes via Hyperclique Pattern Discovery. Proc. of the Pacific Symposium on Biocomputing, (PSB 2005), Maui, 2005.

[4923] Xiong, H. and Shekhar, S. and Tan, P. N. and Kumar, V. Exploiting a Support-based Upper Bound of Pearson's Correlation Coefficient for Efficiently Identifying Strongly Correlated Pairs. KDD04, pages 334-343, Seattle, WA, 2004.

[4924] Xiong, H. and Steinbach, M. and Tan, P. N. and Kumar, V. HICAP: Hierarchial Clustering with Pattern Preservation. SDM04, pages 279--290, Orlando, FL, 2004.

[4925] Xiong, H. and Tan, P. N. and Kumar, V. Mining Strong Affinity Association Patterns in Data Sets with Skewed Support Distribution. ICDM03, pages 387--394, Melbourne, FL, 2003.

[4926] Yan, X. and Han, J. gSpan: Graph-based Substructure Pattern Mining. ICDM02, pages 721--724, Maebashi City, Japan, 2002.

[4927] Yang, C. and Fayyad, U. M. and Bradley, P. S. Efficient discovery of error-tolerant frequent itemsets in high dimensions. KDD01, pages 194--203, San Francisco, CA, 2001.

[4928] Zadrozny, B. and Langford, J. C. and Abe, N. Cost-Sensitive Learning by Cost-Proportionate Example Weighting. ICDM03, pages 435--442, Melbourne, FL, 2003.

[4929] Zaki, M. J. Efficiently mining frequent trees in a forest. KDD02, pages 71--80, Edmonton, Canada, 2002.

[4930] Zaki, M. J. Generating Non-Redundant Association Rules. KDD00, pages 34--43, Boston, MA, 2000.

[4931] Zaki, M. J. Parallel and Distributed Association Mining: A Survey. IEEE Concurrency, special issue on Parallel Mechanisms for Data Mining, 7(4):14--25, 1999.

[4932] Zaki, M. J. and Orihara, M. Theoretical foundations of association rules. DMKD98, Seattle, WA, 1998.

[4933] Zaki, M. J. and Parthasarathy, S. and Ogihara, M. and Li, W. New Algorithms for Fast Discovery of Association Rules. KDD97, pages 283--286, Newport Beach, CA, 1997.

[4934] Zhang, H. and Padmanabhan, B. and Tuzhilin, A. On the Discovery of Significant Statistical Quantitative Rules. KDD04, pages 374--383, Seattle, WA, 2004.

[4935] Zhang, Z. and Lu, Y. and Zhang, B. An Effective Partioning-Combining Algorithm for Discovering Quantitative Association Rules. PAKDD97, Singapore, 1997.

[4936] Data Mining for Scientific and Engineering Applications. Kluwer Academic Publishers, 2001.

[4937] "C. Clifton and M. Kantarcioglu and J. Vaidya. Defining privacy for data mining. National Science Foundation Workshop on Next Generation Data Mining, pages 126--133, Baltimore, MD, 2002.

[4938] Large-Scale Parallel Data Mining. Springer, 2002.

[4939] Rakesh Agrawal and Ramakrishnan Srikant. Privacy-preserving data mining. SIGMOD00, pages 439--450, Dallas, Texas, 2000. ACM Press.

[4940] Mark S. Aldenderfer and Roger K. Blashfield. Cluster Analysis. Sage Publications, Los Angeles, 1985.

[4941] Michael R. Anderberg. Cluster Analysis for Applications. Academic Press, New York, 1973.

[4510] Andrews, R. and Diederich, J. and Tickle, A. A Survey and Critique of Techniques For Extracting Rules From Trained Artificial Neural Networks. Knowledge Based Systems, 8(6):373--389, 1995.

[4942] Phipps Arabie and Lawrence Hubert and G. De Soete. An overview of combinatorial data analysis. In P. Arabie and L. Hubert and G. De Soete, editors, Clustering and Classification, pages 188--217. World Scientific, Singapore, 1996.

[4943] G. Ball and D. Hall. A Clustering Technique for Summarizing Multivariate Data. Behavior Science, 12:153--155, 1967.

[4944] A. Banerjee and S. Merugu and I. S. Dhillon and J. Ghosh. Clustering with Bregman Divergences. In Michael W. Berry and Umeshwar Dayal and Chandrika Kamath and David Skillicorn, editors, SDM04, pages 234--245, Lake Buena Vista, FL, 2004.

[4945] Hans Hermann Bock and Edwin Diday. Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data (Studies in Classification, Data Analysis, and Knowledge Organization). Springer-Verlag Telos, 2000.

[4946] Ingwer Borg and Patrick Groenen. Modern Multidimensional Scaling---Theory and Applications. Springer-Verlag, 1997.

[4947] William G. Cochran. Sampling Techniques. John Wiley & Sons, 3rd edition, 1977.

[4948] James W. Demmel. Applied Numerical Linear Algebra. Society for Industrial & Applied Mathematics, 1997.

[4949] Pedro Domingos and Geoff Hulten. Mining high-speed data streams. KDD00, pages 71--80, Boston, Massachusetts, 2000. ACM Press.

[4950] Gaohua Gu, Feifang Hu and Huan Liu. Sampling and Its Application in Data Mining: A Survey. Technical report, TRA6/00, National University of Singapore, Singapore, 2000.

[4951] C. Giannella and J. Han and J. Pei and X. Yan and P. S. Yu. Mining Frequent Patterns in Data Streams at Multiple Time Granularities. In H. Kargupta and A. Joshi and K. Sivakumar and Y. Yesha, editors, Next Generation Data Mining, pages 191-212. AAAI/MIT, 2003.

[4952] D. J. Hand. Statistics and the Theory of Measurement. Journal of the Royal Statistical Society: Series A (Statistics in Society), 159(3):445-492, 1996.

[4953] Hillol Kargupta and Souptik Datta and Qi Wang and Krishnamoorthy Sivakumar. On the Privacy Preserving Properties of Random Data Perturbation Techniques. ICDM03, pages 99-106, Melbourne, Florida, 2003. IEEE Computer Society.

[4954] Daniel Kifer and Shai Ben-David and Johannes Gehrke. Detecting Change in Data Streams. VLDB04, pages 180-191, Toronto, Canada, 2004. Morgan Kaufmann.

[4955] David Krantz and R. Duncan Luce and Patrick Suppes and Amos Tversky. Foundations of Measurements: Volume 1: Additive and polynomial representations. Academic Press, New York, 1971.

[4956] Martin H. C. Law and Nan Zhang and Anil K. Jain. Nonlinear Manifold Learning for Data Streams.In Michael W. Berry and Umeshwar Dayal and Chandrika Kamath and David Skillicorn, editors, SDM04, Lake Buena Vista, Florida, 2004. SIAM.

[4957] B. W. Lindgren. Statistical Theory. CRC Press, 1993.

[4958] R. Duncan Luce and David Krantz and Patrick Suppes and Amos Tversky. Foundations of Measurements: Volume 3: Representation, Axiomatization, and Invariance. Academic Press, New York, 1990.

[4959] F. Olken and D. Rotem. Random Sampling from Databases---A Survey. Statistics & Computing, 5(1):25--42, 1995.

[4960] Jason Osborne. Notes on the Use of Data Transformations. Practical Assessment, Research & Evaluation, 28(6), 2002.

[4961] Christopher R. Palmer and Christos Faloutsos. Density biased sampling: An improved method for data mining and clustering. ACM SIGMOD Record, 29(2):82--92, 2000.

[4962] Spiros Papadimitriou and Anthony Brockwell and Christos Faloutsos. Adaptive, unsupervised stream mining. VLDB Journal, 13(3):222-239, 2004.

[4963] Foster J. Provost and David Jensen and Tim Oates. Efficient Progressive Sampling. KDD99, pages 23--32, 1999.

[4964] Stanley Smith Stevens. Measurement. In Gary Michael Maranell, editors, Scaling: A Sourcebook for Behavioral Scientists, pages 22--41. Aldine Publishing Co., Chicago, 1974.

[4965] Stanley Smith Stevens. On the Theory of Scales of Measurement. Science, 103(2684):677--680, 1946.

[4966] Patrick Suppes and David Krantz and R. Duncan Luce and Amos Tversky. Foundations of Measurements: Volume 2: Geometrical, Threshold, and Probabilistic Representations. Academic Press, New York, 1989.

[4967] Hannu Toivonen. Sampling Large Databases for Association Rules. In T. M. Vijayaraman and Alejandro P. Buchmann and C. Mohan and Nandlal L. Sarda, editors, VLDB96, pages 134--145, 1996. Morgan Kaufman.

[4968] John W. Tukey. On the Comparative Anatomy of Transformations. Annals of Mathematical Statistics, 28(3):602--632, 1957.

[4969] Vassilios S. Verykios and Elisa Bertino and Igor Nai Fovino and Loredana Parasiliti Provenza and Yucel Saygin and Yannis Theodoridis. State-of-the-art in privacy preserving data mining. SIGMOD Record, 33(1):50--57, 2004.

[4970] Richard Y. Wang and Mostapha Ziad and Yang W. Lee and Y. Richard Wang. Data Quality of The Kluwer International Series on Advances in Database Systems, Volume 23. Kluwer Academic Publishers, 2001.

[4971] Mohammed Javeed Zaki and Srinivasan Parthasarathy and Wei Li and Mitsunori Ogihara. Evaluation of Sampling for Data Mining of Association Rules. Technical report, TR617, Rensselaer Polytechnic Institute, 1996.

[4972] Feature Extraction, Construction and Selection: A Data Mining Perspective of Kluwer International Series in Engineering and Computer Science, 453. Kluwer Academic Publishers, 1998.

[4973] MIT Total Data Quality Management Program. web.mit.edu/tdqm/www/index.shtml, 2003.

[4974] Mihael Ankerst and Markus M. Breunig and Hans-Peter Kriegel and Jörg Sander. OPTICS: Ordering Points To Identify the Clustering Structure. In Alex Delis and Christos Faloutsos and Shahram Ghandeharizadeh, editors, SIGMOD99, pages 49--60, Philadelphia, Pennsylvania, 1999. ACM Press.

[4975] Daniel Barbará. Requirements for clustering data streams. SIGKDD Explorations Newsletter, 3(2):23--27, 2002.

[4976] Pavel Berkhin. Survey Of Clustering Data Mining Techniques. Technical report, Accrue Software, San Jose, CA, 2002.

[4977] J. Bilmes. A Gentle Tutorial on the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models. Technical report, ICSI-TR-97-021, University of California at Berkeley, 1997.

[4978] C. M. Bishop and M. Svensen and C. K. I. Williams. GTM: A principled alternative to the self-organizing map. In C. von der Malsburg and W. von Seelen and J. C. Vorbruggen and B. Sendhoff, editors, Artificial Neural Networks---ICANN96. Intl. Conf, Proc., pages 165-170. Springer-Verlag, Berlin, Germany, 1996.

[4979] Avrim Blum and Pat Langley. Selection of Relevant Features and Examples in Machine Learning. Artificial Intelligence, 97(1--2):245--271, 1997.

[4980] Daniel Boley. Principal Direction Divisive Partitioning. Data Mining and Knowledge Discovery, 2(4):325-344, 1998.

[4981] Paul S. Bradley and Usama M. Fayyad. Refining Initial Points for K-Means Clustering. In Jude W. Shavlik, editors, ICML98, pages 91--99, Madison, WI, 1998. Morgan Kaufmann Publishers Inc.

[4982] Paul S. Bradley and Usama M. Fayyad and Cory Reina. Scaling Clustering Algorithms to Large Databases. In Rakesh Agrawal and Paul Stolorz and Gregory Piatetsky-Shapiro, editors, KDD98, pages 9--15, New York City, 1998. AAAI Press.

[4983] Peter Cheeseman and James Kelly and Matthew Self and John Stutz and Will Taylor and Don Freeman. AutoClass: a Bayesian classification system. Readings in knowledge acquisition and learning: automating the construction and improvement of expert systems, pages 431--441. Morgan Kaufmann Publishers Inc., 1993.

[4984] James Dougherty and Ron Kohavi and Mehran Sahami. Supervised and Unsupervised Discretization of Continuous Features. ICML95, pages 194--202, 1995.

[4985] Duda, Robert O. and Hart, Peter E. and Stork, David G. Pattern Classification. John Wiley & Sons, Inc., New York, Second edition, 2001.

[4986] Tapio Elomaa and Juho Rousu. General and Efficient Multisplitting of Numerical Attributes. Machine Learning, 36(3):201--244, 1999.

[4987] Levent Ertöz and Michael Steinbach and Vipin Kumar. A New Shared Nearest Neighbor Clustering Algorithm and its Applications. Workshop on Clustering High Dimensional Data and its Applications, Proc. of Text Mine'01, First SIAM Intl. Conf. on Data Mining, Chicago, IL, USA, 2001.

[4988] Levent Ertöz and Michael Steinbach and Vipin Kumar. Finding Clusters of Different Sizes, Shapes, and Densities in Noisy, High Dimensional Data. SDM03, San Francisco, 2003. SIAM.

[4989] Martin Ester and Hans-Peter Kriegel and Jörg Sander and Michael Wimmer and Xiaowei Xu. Incremental Clustering for Mining in a Data Warehousing Environment. In Ashish Gupta and Oded Shmueli and Jennifer Widom, editors, VLDB98, pages 323--333, New York City, 1998. Morgan Kaufmann.

[4990] Martin Ester and Hans-Peter Kriegel and Jorg Sander and Xiaowei Xu. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Evangelos Simoudi and Jiawei Han and Usama M. Fayyad, editors, KDD96, pages 226--231, Portland, Oregon, 1996. AAAI Press.

[4991] Brian S. Everitt and Sabine Landau and Morven Leese. Cluster Analysis. Arnold Publishers, London, Fourth edition, 2001.

[4992] U. M. Fayyad and K. B. Irani. Multi-interval discretization of continuousvalued attributes for classification learning. Proc. 13th Int. Joint Conf. on Artificial Intelligence, pages 1022--1027, 1993. Morgan Kaufman.

[4993] Douglas Fisher. Iterative Optimization and Simplification of Hierarchical Clusterings. Journal of Artificial Intelligence Research, 4:147--179, 1996.

[4994] Douglas Fisher and Pat Langley. Conceptual clustering and its relation to numerical taxonomy. Artificial Intelligence and Statistics, :77--116, 1986.

[4995] Chris Fraley and Adrian E. Raftery. How Many Clusters? Which Clustering Method? Answers Via Model-Based Cluster Analysis. The Computer Journal, 41(8):578--588, 1998.

[4996] Venkatesh Ganti and Johannes Gehrke and Raghu Ramakrishnan. CACTUS--Clustering Categorical Data Using Summaries. KDD99, pages 73--83, 1999. ACM Press.

[4997] Allen Gersho and Robert M. Gray. Vector Quantization and Signal Compression, volume 159 of Kluwer International Series in Engineering and Computer Science. Kluwer Academic Publishers, 1992.

[4998] Joydeep Ghosh. Scalable Clustering Methods for Data Mining. In Nong Ye, editors, Handbook of Data Mining, pages 247--277. Lawrence Ealbaum Assoc, 2003.

[4999] David Gibson and Jon M. Kleinberg and Prabhakar Raghavan. Clustering Categorical Data: An Approach Based on Dynamical Systems. VLDB Journal, 8(3--4):222--236, 2000.

[5000] K. C. Gowda and G. Krishna. Agglomerative Clustering Using the Concept of Mutual Nearest Neighborhood. Pattern Recognition, 10(2):105--112, 1978.

[5001] Sudipto Guha and Adam Meyerson and Nina Mishra and Rajeev Motwani and Liadan O'Callaghan. Clustering Data Streams: Theory and Practice. IEEE Transactions on Knowledge and Data Engineering, 15(3):515--528, 2003.

[5002] Sudipto Guha and Rajeev Rastogi and Kyuseok Shim. CURE: An Efficient Clustering Algorithm for Large Databases. In Laura M. Haas and Ashutosh Tiwary, editors, SIGMOD98, pages 73--84, 1998. ACM Press.

[5003] Sudipto Guha and Rajeev Rastogi and Kyuseok Shim. ROCK: A Robust Clustering Algorithm for Categorical Attributes. In Masaru Kitsuregawa and Leszek Maciaszek and Mike Papazoglou and Calton Pu, editors, ICDE99, pages 512--521, 1999. IEEE Computer Society.

[5004] Maria Halkidi and Yannis Batistakis and Michalis Vazirgiannis. Cluster validity methods: part I. SIGMOD Record (ACM Special Interest Group on Management of Data), 31(2):40--45, 2002.

[5005] Maria Halkidi and Yannis Batistakis and Michalis Vazirgiannis. Clustering validity checking methods: part II. SIGMOD Record (ACM Special Interest Group on Management of Data), 31(3):19--27, 2002.

[5006] Greg Hamerly and Charles Elkan. Alternatives to the k-means algorithm that find better clusterings. CIKM02, pages 600--607, McLean, Virginia, 2002. ACM Press.

[5007] Jiawei Han and Micheline Kamber and Anthony Tung. Spatial Clustering Methods in Data Mining: A review. In Harvey J. Miller and Jiawei Han, editors, Geographic Data Mining and Knowledge Discovery, pages 188--217. Taylor and Francis, London, 2001.

[5008] John Hartigan. Clustering Algorithms. Wiley, New York, 1975.

[5009] Alexander Hinneburg and Daniel A. Keim. Optimal Grid-Clustering: Towards Breaking the Curse of Dimensionality in High-Dimensional Clustering. In M. P. Atkinson and M. E. Orlowska and P. Valduriez and S. B. Zdonik and M. L. Brodie, editors, VLDB99, pages 506--517, Edinburgh, Scotland, UK, 1999. Morgan Kaufmann.

[5010] Alexander Hinneburg and Daniel. A. Keim. An Efficient Approach to Clustering in Large Multimedia Databases with Noise. In Rakesh Agrawal and Paul Stolorz, editors, KDD98, pages 58--65, New York City, 1998. AAAI Press.

[5011] F. Hussain and H. Liu and C. L. Tan and M. Dash. TRC6/99: Discretization: an enabling technique. Technical report, National University of Singapore, Singapore, 1999.

[5012] Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data of Prentice Hall Advanced Reference Series. Prentice Hall, 1988. Book available online at http://www.cse.msu.edu/ : jain/Clustering_Jain_Dubes.pdf.

[5013] Anil K. Jain and M. Narasimha Murty and Patrick J. Flynn. Data clustering: A review. ACM Computing Surveys, 31(3):264--323, 1999.

[5014] Nicolas Jardine and Robin Sibson. Mathematical Taxonomy. Wiley, New York, 1971.

[5015] R. A. Jarvis and E. A. Patrick. Clustering Using a Similarity Measure Based on Shared Nearest Neighbors. IEEE Transactions on Computers, C-22(11):1025-1034, 1973.

[5016] I. T. Jolliffe. Principal Component Analysis. Springer Verlag, 2nd edition, 2002.

[5017] Istvan Jonyer and Diane J. Cook and Lawrence B. Holder. Graph-based hierarchical conceptual clustering. Journal of Machine Learning Research, 2:19--43, 2002.

[5018] Karin Kailing and Hans-Peter Kriegel and Peer Kröger. Density-Connected Subspace Clustering for High-Dimensional Data. In Michael W. Berry and Umeshwar Dayal and Chandrika Kamath and David B. Skillicorn, editors, SDM04, pages 428--439, Lake Buena Vista, Florida, 2004. SIAM.

[5019] George Karypis and Eui-Hong Han and Vipin Kumar. CHAMELEON: A Hierarchical Clustering Algorithm Using Dynamic Modeling. IEEE Computer, 32(8):68--75, 1999.

[5020] George Karypis and Eui-Hong Han and Vipin Kumar. Multilevel Refinement for Hierarchical Clustering. Technical report, TR 99-020, University of Minnesota, Minneapolis, MN, 1999.

[5021] George Karypis and Vipin Kumar. Multilevel k-way Partitioning Scheme for Irregular Graphs. Journal of Parallel and Distributed Computing, 48(1):96-129, 1998.

[5022] Leonard Kaufman and Peter J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster Analysis of Wiley Series in Probability and Statistics. John Wiley and Sons, New York, 1990.

[5023] Jon M. Kleinberg. An Impossibility Theorem for Clustering. Proc. of the 16th Annual Conf. on Neural Information Processing Systems, 2002.

[5024] Ron Kohavi and George H. John. Wrappers for Feature Subset Selection. Artificial Intelligence, 97(1--2):273--324, 1997.

[5025] Teuvo Kohonen and Thomas S. Huang and Manfred R. Schroeder. Self-Organizing Maps. Springer-Verlag, 2000.

[5026] Joseph B. Kruskal and Eric M. Uslaner. Multidimensional Scaling. Sage Publications, 1978.

[5027] Bjornar Larsen and Chinatsu Aone. Fast and Effective Text Mining Using Linear-Time Document Clustering. KDD99, pages 16--22, San Diego, California, 1999. ACM Press.

[5028] H. Liu and H. Motoda and L. Yu. Feature Extraction, Selection, and Construction. In Nong Ye, editors, The Handbook of Data Mining, pages 22--41. Lawrence Erlbaum Associates, Inc., Mahwah, NJ, 2003.

[5029] Huan Liu and Hiroshi Motoda. Feature Selection for Knowledge Discovery and Data Mining of Kluwer International Series in Engineering and Computer Science, 454. Kluwer Academic Publishers, 1998.

[5030] J. MacQueen. Some methods for classification and analysis of multivariate observations. In Le Cam, L. M. and Neyman, J., editors, Proc. of the 5th Berkeley Symp. on Mathematical Statistics and Probability, pages 281--297, 1967. University of California Press.

[5031] Michalski, R. S. and Stepp, R. E. Automated Construction of Classifications: Conceptual Clustering Versus Numerical Taxonomy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 5(4):396--409, 1983.

[5032] Glen W. Milligan. Clustering Validation: Results and Implications for Applied Analyses. In P. Arabie and L. Hubert and G. De Soete, editors, Clustering and Classification, pages 345--375. World Scientific, Singapore, 1996.

[5033] Boris Mirkin. Mathematical Classification and Clustering, volume 11 of Nonconvex Optimization and Its Applications. Kluwer Academic Publishers, 1996.

[5034] Nina Mishra and Dana Ron and Ram Swaminathan. A New Conceptual Clustering Framework. Machine Learning Journal, 56(1--3):115--151, 2004.

[5035] Luis Carlos Molina and Lluis Belanche and Angela Nebot. Feature Selection Algorithms: A Survey and Experimental Evaluation. ICDM02, 2002.

[5036] Fionn Murtagh. Clustering massive data sets. In J. Abello and P. M. Pardalos and M. G. C. Reisende, editors, Handbook of Massive Data Sets. Kluwer, 2000.

[5037] Fionn Murtagh. Multidimensional Clustering Algorithms. Physica-Verlag, Heidelberg and Vienna, 1985.

[5038] Harsha Nagesh and Sanjay Goil and Alok Choudhary. Parallel Algorithms for Clustering High-Dimensional Large-Scale Datasets. In Robert L. Grossman and Chandrika Kamath and Philip Kegelmeyer and Vipin Kumar and Raju Namburu, editors, Data Mining for Scientific and Engineering Applications, pages 335--356. Kluwer Academic Publishers, Dordrecht, Netherlands, 2001.

[5039] Raymond T. Ng and Jiawei Han. CLARANS: A Method for Clustering Objects for Spatial Data Mining. IEEE Transactions on Knowledge and Data Engineering, 14(5):1003--1016, 2002.

[5040] Dan Pelleg and Andrew W. Moore. X -means: Extending K -means with Efficient Estimation of the Number of Clusters. ICML00, pages 727--734, 2000. Morgan Kaufmann, San Francisco, CA.

[5041] Markus Peters and Mohammed J. Zaki. CLICKS: Clustering Categorical Data using K-partite Maximal Cliques. ICDE05, Tokyo, Japan, 2005.

[5042] Thomas C. Redman. Data Quality: The Field Guide. Digital Press, 2001.

[5043] Charles Romesburg. Cluster Analysis for Researchers. Life Time Learning, Belmont, CA, 1984.

[5044] J. Sander and M. Ester and H.-P. Kriegel and X. Xu. Density-Based Clustering in Spatial Databases: The Algorithm GDBSCAN and its Applications. Data Mining and Knowledge Discovery, 2(2):169--194, 1998.

[5045] Sergio M. Savaresi and Daniel Boley. A comparative analysis on the bisecting K-means and the PDDP clustering algorithms. Intelligent Data Analysis, 8(4):345-362, 2004.

[5046] Erich Schikuta and Martin Erhart. The BANG-Clustering System: Grid-Based Data Analysis. In Xiaohui Liu and Paul R. Cohen and Michael R. Berthold, editors, Advances in Intelligent Data Analysis, Reasoning about Data, Second Intl. Symposium, IDA-97, London in Lecture Notes in Computer Science, pages 513--524, 1997. Springer.

[5047] Gholamhosein Sheikholeslami and Surojit Chatterjee and Aidong Zhang. Wavecluster: A multi-resolution clustering approach for very large spatial databases. In Ashish Gupta and Oded Shmueli and Jennifer Widom, editors, VLDB98, pages 428--439, New York City, 1998. Morgan Kaufmann.

[5048] Sneath, Peter H. A. and Robert R. Sokal. Numerical Taxonomy. Freeman, San Francisco, 1971.

[5049] Helmuth Späth. Cluster Analysis Algorithms for Data Reduction and Classification of Objects, volume 4 of Computers and Their Application. Ellis Horwood Publishers, Chichester, 1980. ISBN 0-85312-141-9.

[5050] Ramakrishnan Srikant and Rakesh Agrawal. Mining Quantitative Association Rules in Large Relational Tables. In H. V. Jagadish and Inderpal Singh Mumick, editors, SIGMOD96, pages 1--12, Montreal, Quebec, Canada, 1996.

[5051] Michael Steinbach and George Karypis and Vipin Kumar. A Comparison of Document Clustering Techniques. Proc. of KDD Workshop on Text Mining, Proc. of the 6th Intl. Conf. on Knowledge Discovery and Data Mining, Boston, MA, 2000.

[5052] Robert E. Stepp and Ryszard S. Michalski. Conceptual clustering of structured objects: A goal-oriented approach. Artificial Intelligence, 28(1):43--69, 1986.

[5053] Alexander Strehl and Joydeep Ghosh. A Scalable Approach to Balanced, High-dimensional Clustering of Market-Baskets. Proc. of the 7th Intl. Conf. on High Performance Computing (HiPC 2000) in Lecture Notes in Computer Science, pages 525--536, Bangalore, India, 2000. Springer.

[5054] Charles T. Zahn. Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters. IEEE Transactions on Computers, C-20(1):68-86, 1971.

[5055] Tian Zhang and Raghu Ramakrishnan and Miron Livny. BIRCH: an efficient data clustering method for very large databases. In H. V. Jagadish and Inderpal Singh Mumick, editors, SIGMOD96, pages 103--114, Montreal, Quebec, Canada, 1996. ACM Press.

[5056] CLUTO 2.1.1: Software for Clustering High-Dimensional Datasets. /www.cs.umn.edu/ : karypis, 2003.

[4629] Agrawal, R. and Imielinski, T. and Swami, A. Database mining: A performance perspective. IEEE Transactions on Knowledge and Data Engineering, 5:914--925, 1993.

[5057] P. S. Bradley and U. M. Fayyad and C. Reina. Scaling EM (Expectation Maximization) Clustering to Large Databases. Technical report, MSR-TR-98-35, Microsoft Research, 1999.

[5058] D. A. Burn. Designing Effective Statistical Graphs. In C. R. Rao, editors, Handbook of Statistics 9. Elsevier/North-Holland, Amsterdam, The Netherlands, 1993.

[5059] Inderjit S. Dhillon and Yuqiang Guan and J. Kogan. Iterative Clustering of High Dimensional Text Data Augmented by Local Search. ICDM02, pages 131-138, 2002. IEEE Computer Society.

[5060] Inderjit S. Dhillon and Dharmendra S. Modha. Concept Decompositions for Large Sparse Text Data Using Clustering. Machine Learning, 42(1/2):143-175, 2001.

[5061] Michael Friendly. Gallery of Data Visualization. http://www.math.yorku.ca/SCS/Gallery/, 2005.

[5062] Eui-Hong Han and George Karypis and Vipin Kumar and Bamshad Mobasher. Hypergraph Based Clustering in High-Dimensional Data Sets: A Summary of Results. IEEE Data Eng. Bulletin, 21(1):15-22, 1998.

[5063] Konstantinos Kalpakis and Dhiral Gada and Vasundhara Puttagunta. Distance Measures for Effective Clustering of ARIMA Time-Series. ICDM01, pages 273-280, 2001. IEEE Computer Society.

[5064] Eamonn J. Keogh and Michael J. Pazzani. Scaling up dynamic time warping for datamining applications. Proc. of the 10th Intl. Conf. on Knowledge Discovery and Data Mining, pages 285-289, 2000.

[5065] Robert Spence. Information Visualization. ACM Press, New York, 2000.

[5066] Michael Steinbach and Pang-Ning Tan and Vipin Kumar and Steven Klooster and Christopher Potter. Discovery of climate indices using clustering. KDD '03: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 446--455, New York, NY, USA, 2003. ACM Press.

[5067] Edward R. Tufte. The Visual Display of Quantitative Information. Graphics Press, Cheshire, CT, 1986.

[5068] John W. Tukey. Exploratory data analysis. Addison-Wesley, 1977.

[5069] Velleman, Paul and Hoaglin, David. The ABC's of EDA: Applications, Basics, and Computing of Exploratory Data Analysis. Duxbury, 1981.

[5070] Bin Zhang and Meichun Hsu and Umeshwar Dayal. K-Harmonic Means---A Data Clustering Algorithm. Technical report, HPL-1999-124, Hewlett Packard Laboratories, 1999.

[5071] Ying Zhao and George Karypis. Empirical and theoretical comparisons of selected criterion functions for document clustering. Machine Learning, 55(3):311--331, 2004.

[5072] Information Visualization in Data Mining and Knowledge Discovery. Morgan Kaufmann Publishers, San Francisco, CA, 2001.

[5073] Mathematica 5.1. Wolfram Research, Inc.. http://www.wolfram.com/, 2005.

[5074] MATLAB 7.0. The MathWorks, Inc.. http://www.mathworks.com, 2005.

[5075] Microsoft Excel 2003. Microsoft, Inc.. http://www.microsoft.com/, 2003.

[4651] Agarwal, R. C. and Shafer, J. C. Parallel Mining of Association Rules. IEEE Transactions on Knowledge and Data Engineering, 8(6):962--969, 1998.

[4652] Aggarwal, C. C. and Sun, Z. and Yu, P. S. Online Generation of Profile Association Rules. KDD98, pages 129--133, New York, NY, 1996.

[4653] Aggarwal, C. C. and Yu, P. S. Mining Associations with the Collective Strength Approach. IEEE Trans. on Knowledge and Data Engineering, 13(6):863--873, 2001.

[4654] Aggarwal, C. C. and Yu, P. S. Mining Large Itemsets for Association Rules. Data Engineering Bulletin, 21(1):23--31, 1998.

[4655] Agrawal, R. and Imielinski, T. and Swami, A. Mining association rules between sets of items in large databases. Proc. ACM SIGMOD Intl. Conf. Management of Data, pages 207--216, Washington, DC, 1993.

[4656] Agrawal, R. and Srikant, R. Mining Sequential Patterns. Proc. of Intl. Conf. on Data Engineering, pages 3--14, Taipei, Taiwan, 1995.

[4657] Aha, D. W. A study of instance-based algorithms for supervised learning tasks: mathematical, empirical, and psychological evaluations. PhD thesis, University of California, Irvine, 1990.

[4658] Ali, K. and Manganaris, S. and Srikant, R. Partial Classification using Association Rules. KDD97, pages 115--118, Newport Beach, CA, 1997.

[4659] Alsabti, K. and Ranka, S. and Singh, V. CLOUDS: A Decision Tree Classifier for Large Datasets. KDD98, pages 2--8, New York, NY, 1998.

[4660] Aumann, Y. and Lindell, Y. A Statistical Theory for Quantitative Association Rules. KDD99, pages 261--270, San Diego, CA, 1999.

[5076] E. F. Codd and S. B. Codd and C. T. Smalley. Providing OLAP (On-line Analytical Processing) to User- Analysts: An IT Mandate. White Paper, E.F. Codd and Associates, 1993.

[5077] Jim Gray and Surajit Chaudhuri and Adam Bosworth and Andrew Layman and Don Reichart and Murali Venkatrao and Frank Pellow and Hamid Pirahesh. Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals. Journal Data Mining and Knowledge Discovery, 1(1):29--53, 1997.

[5078] Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems. McGraw-Hill, 3rd edition, 2002.

[5079] Arie Shoshani. OLAP and statistical databases: similarities and differences. Proc. of the Sixteenth ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems, pages 185--196, 1997. ACM Press.

[5080] Zhong, N. and Yao, Y. Y. and Ohsuga, S. Peculiarity Oriented Multi-database Mining. PKDD99, pages 136--146, Prague, Czech Republic, 1999.

[5081] R: A language and environment for statistical computing and graphics. The R Project for Statistical Computing. http://www.r-project.org/, 2005.

[4679] Allwein, E. L. and Schapire, R. E. and Singer, Y. Reducing Multiclass to Binary: A Unifying Approach to Margin Classifiers. Journal of Machine Learning Research, 1:113--141, 2000.

[4680] Antonie, M-L. and Zaďane, O. R. Mining Positive and Negative Association Rules: An Approach for Confined Rules. PKDD04, pages 27--38, Pisa, Italy, 2004.

[5082] S-PLUS. Insightful Corporation. http://www.insightful.com, 2005.

[5083] SAS: Statistical Analysis System. SAS Institute Inc.. http://www.sas.com/, 2005.

[4683] Ayres, J. and Flannick, J. and Gehrke, J. and Yiu, T. Sequential Pattern mining using a bitmap representation. KDD02, pages 429-435, Edmonton, Canada, 2002.

[4684] Barbará, D. and Couto, J. and Jajodia, S. and Wu, N. ADAM: A Testbed for Exploring the Use of Data Mining in Intrusion Detection. SIGMOD Record, 30(4):15--24, 2001.

[4685] Bay, S. D. and Pazzani, M. Detecting Group Differences: Mining Contrast Sets. Data Mining and Knowledge Discovery, 5(3):213--246, 2001.

[4686] Bayardo, R. Efficiently Mining Long Patterns from Databases. SIGMOD98, pages 85--93, Seattle, WA, 1998.

[4687] Bayardo, R. and Agrawal, R. Mining the Most Interesting Rules. KDD99, pages 145--153, San Diego, CA, 1999.

[4688] Benjamini, Y. and Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal Royal Statistical Society B, 57(1):289--300, 1995.

[4689] Breslow, L. A. and Aha, D. W. Simplifying Decision Trees: A Survey. Knowledge Engineering Review, 12(1):1--40, 1997.

[5084] SPSS: Statistical Package for the Social Sciences. SPSS, Inc.. http://www.spss.com/, 2005.

[4691] Bennett, K. and Campbell, C. Support Vector Machines: Hype or Hallelujah. SIGKDD Explorations, 2(2):1--13, 2000.

[4692] Berry, M. J. A. and Linoff, G. Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management. Wiley Computer Publishing, 2nd edition, 2004.

[4693] Bishop, C. M. Neural Networks for Pattern Recognition. Oxford University Press, Oxford, U.K., 1995.

[4694] Bolton, R. J. and Hand, D. J. and Adams, N. M. Determining Hit Rate in Pattern Search. Proc. of the ESF Exploratory Workshop on Pattern Detection and Discovery in Data Mining, pages 36--48, London, UK, 2002.

[4695] Boulicaut, J-F. and Bykowski, A. and Jeudy, B. Towards the Tractable Discovery of Association Rules with Negations. Proc. of the 4th Intl. Conf on Flexible Query Answering Systems FQAS'00, pages 425--434, Warsaw, Poland, 2000.

[4696] Bradley, A. P. The use of the area under the ROC curve in the Evaluation of Machine Learning Algorithms. Pattern Recognition, 30(7):1145--1149, 1997.

[4697] Paul S. Bradley and Johannes Gehrke and Raghu Ramakrishnan and Ramakrishnan Srikant. Scaling mining algorithms to large databases. Communications of the ACM, 45(8):38-43, 2002.

[4698] Breiman, L. Bagging Predictors. Machine Learning, 24(2):123--140, 1996.

[4699] Breiman, L. Bias, Variance, and Arcing Classifiers. Technical report, 486, University of California, Berkeley, CA, 1996.

[4700] Breiman, L. Random Forests. Machine Learning, 45(1):5--32, 2001.

[4701] Breiman, L. and Friedman, J. H. and Olshen, R. and Stone, C. J. Classification and Regression Trees. Chapman & Hall, New York, 1984.

[4702] Brin, S. and Motwani, R. and Silverstein, C. Beyond market baskets: Generalizing association rules to correlations. Proc. ACM SIGMOD Intl. Conf. Management of Data, pages 265--276, Tucson, AZ, 1997.

[4703] Brin, S. and Motwani, R. and Ullman, J. and Tsur, S. Dynamic Itemset Counting and Implication Rules for market basket data. SIGMOD97, pages 255--264, Tucson, AZ, 1997.

[4704] Buntine, W. Learning classification trees. In Hand, D. J., editors, Artificial Intelligence Frontiers in Statistics, pages 182--201, 1993. Chapman & Hall, London.

[4705] Burges, C. J. C. A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 2(2):121--167, 1998.

[4706] Cai, C. H. and Fu, A. and Cheng, C. H. and Kwong, W. W. Mining Association Rules with Weighted Items. Proc. of IEEE Intl. Database Engineering and Applications Symp., pages 68--77, Cardiff, Wales, 1998.

[4707] Cant u' -Paz, E. and Kamath, C. Using evolutionary algorithms to induce oblique decision trees. Proc. of the Genetic and Evolutionary Computation Conf., pages 1053--1060, San Francisco, CA, 2000.

[4708] Chakrabarti, S. Mining the Web: Discovering Knowledge from Hypertext Data. Morgan Kaufmann, San Francisco, CA, 2003.

[4709] Chawla, N. V. and Bowyer, K. W. and Hall, L. O. and Kegelmeyer, W. P. SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16:321--357, 2002.

[4710] Chawla, N. V. and Japkowicz, N. and Kolcz, A. Editorial: Special Issue on Learning from Imbalanced Data Sets. SIGKDD Explorations, 6(1):1--6, 2004.

[4711] Chen, Q. and Dayal, U. and Hsu, M. A Distributed OLAP infrastructure for E-Commerce. Proc. of the 4th IFCIS Intl. Conf. on Cooperative Information Systems, pages 209--220, Edinburgh, Scotland, 1999.

[4712] Cheng, H. and Yan, X. and Han, J. IncSpan: incremental mining of sequential patterns in large database. KDD04, pages 527-532, Seattle, WA, 2004.

[4713] Cherkassky, V. and Mulier, F. Learning from Data: Concepts, Theory, and Methods. Wiley Interscience, 1998.

[4714] Cheung, D. C. and Lee, S. D. and Kao, B. A General Incremental Technique for Maintaining Discovered Association Rules. Proc. of the 5th Intl. Conf. on Database Systems for Advanced Applications, pages 185--194, Melbourne, Australia, 1997.

[4715] Clark, P. and Boswell, R. Rule Induction with CN2: Some Recent Improvements. Machine Learning: Proc. of the 5th European Conf. (EWSL-91), pages 151--163, 1991.

[4716] Clark, P. and Niblett, T. The CN2 Induction Algorithm. Machine Learning, 3(4):261--283, 1989.

[4717] Cohen, W. W. Fast Effective Rule Induction. ICML95, pages 115--123, Tahoe City, CA, 1995.

[4718] Cooley, R. and Tan, P. N. and Srivastava, J. Discovery of Interesting Usage Patterns from Web Data. In Spiliopoulou, M. and Masand, B., editors, Advances in Web Usage Analysis and User Profiling, pages 163--182. Lecture Notes in Computer Science, 2000.

[4719] Cost, S. and Salzberg, S. A Weighted Nearest Neighbor Algorithm for Learning with Symbolic Features. Machine Learning, 10:57--78, 1993.

[4720] Cover, T. M. and Hart, P. E. Nearest Neighbor Pattern Classification. Knowledge Based Systems, 8(6):373--389, 1995.

[4721] Cristianini, N. and Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, 2000.

[4722] Dietterich, T. G. Ensemble Methods in Machine Learning. First Intl. Workshop on Multiple Classifier Systems, Cagliari, Italy, 2000.

[4723] Dietterich, T. G. and Bakiri, G. Solving Multiclass Learning Problems via Error-Correcting Output Codes. Journal of Artificial Intelligence Research, 2:263--286, 1995.

[4724] Dokas, P. and Ertöz, L. and Kumar, V. and Lazarevic, A. and Srivastava, J. and Tan, P. N. Data Mining for Network Intrusion Detection. Proc. NSF Workshop on Next Generation Data Mining, Baltimore, MD, 2002.

[4725] Domingos, P. MetaCost: A General Method for Making Classifiers Cost-Sensitive. KDD99, pages 155--164, San Diego, CA, 1999.

[4726] Domingos, P. The RISE system: Conquering without separating. Proc. of the 6th IEEE Intl. Conf. on Tools with Artificial Intelligence, pages 704--707, New Orleans, LA, 1994.

[4727] Domingos, P. The Role of Occam's Razor in Knowledge Discovery. Data Mining and Knowledge Discovery, 3(4):409--425, 1999.

[4728] Domingos, P. and Pazzani, M. On the Optimality of the Simple Bayesian Classifier under Zero-One Loss. Machine Learning, 29(2-3):103--130, 1997.

[4729] Dong, G. and Li, J. Efficient Mining of Emerging Patterns: Discovering Trends and Differences. KDD99, pages 43--52, San Diego, CA, 1999.

[4730] Dong, G. and Li, J. Interestingness of discovered association rules in terms of neighborhood-based unexpectedness. PAKDD98, pages 72--86, Melbourne, Australia, 1998.

[4731] Drummond, C. and Holte, R. C. C4.5, Class imbalance, and Cost sensitivity: Why under-sampling beats over-sampling. ICML'2004 Workshop on Learning from Imbalanced Data Sets II, Washington, DC, 2003.

[4732] Duda, R. O. and Hart, P. E. and Stork, D. G. Pattern Classification. John Wiley & Sons, Inc., New York, 2nd edition, 2001.

[4733] DuMouchel, W. and Pregibon, D. Empirical Bayes Screening for Multi-Item Associations. KDD01, pages 67--76, San Francisco, CA, 2001.

[4734] Dunham, M. H. Data Mining: Introductory and Advanced Topics. Prentice Hall, 2002.

[4735] Dunkel, B. and Soparkar, N. Data Organization and Access for Efficient Data Mining. ICDE99, pages 522--529, Sydney, Australia, 1999.

[4736] Efron, B. and Tibshirani, R. Cross-validation and the Bootstrap: Estimating the Error Rate of a Prediction Rule. Technical report, Stanford University, 1995.

[4737] Elkan, C. The Foundations of Cost-Sensitive Learning. Proc. of the 17th Intl. Joint Conf. on Artificial Intelligence, pages 973--978, Seattle, WA, 2001.

[4738] Esposito, F. and Malerba, D. and Semeraro, G. A Comparative Analysis of Methods for Pruning Decision Trees. IEEE Trans. Pattern Analysis and Machine Intelligence, 19(5):476--491, 1997.

[4739] F u ¨ rnkranz, J. and Widmer, G. Incremental reduced error pruning. ICML94, pages 70--77, New Brunswick, NJ, 1994.

[4740] Fabris, C. C. and Freitas, A. A. Discovering surprising patterns by detecting occurrences of Simpson's paradox. Proc. of the 19th SGES Intl. Conf. on Knowledge-Based Systems and Applied Artificial Intelligence), pages 148--160, Cambridge, UK, 1999.

[4741] Fan, W. and Stolfo, S. J. and Zhang, J. and Chan, P. K. AdaCost: misclassification cost-sensitive boosting. ICML99, pages 97--105, Bled, Slovenia, 1999.

[4742] Usama M. Fayyad and Gregory Piatetsky-Shapiro and Padhraic Smyth. From Data Mining to Knowledge Discovery: An Overview. Advances in Knowledge Discovery and Data Mining, pages 1-34. AAAI Press, 1996.

[4743] Feng, L. and Lu, H. J. and Yu, J. X. and Han, J. Mining inter-transaction associations with templates. CIKM99, pages 225--233, Kansas City, Missouri, 1999.

[4744] Ferri, C. and Flach, P. and Hernandez-Orallo, J. Learning Decision Trees Using the Area Under the ROC Curve. ICML02, pages 139--146, Sydney, Australia, 2002.

[4745] Fisher, R. A. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7:179--188, 1936.

[4746] Freitas, A. A. Understanding the crucial differences between classification and discovery of association rules---a position paper. SIGKDD Explorations, 2(1):65--69, 2000.

[4747] Freund, Y. and Schapire, R. E. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119--139, 1997.

[4748] Friedman, J. H. Data Mining and Statistics: What's the Connection?. Unpublished. www-stat.stanford.edu/ : jhf/ftp/dm-stat.ps, 1997.

[4749] Friedman, J. H. and Fisher, N. I. Bump hunting in high-dimensional data. Statistics and Computing, 9(2):123--143, 1999.

[4750] Fukuda, T. and Morimoto, Y. and Morishita, S. and Tokuyama, T. Mining Optimized Association Rules for Numeric Attributes. PODS96, pages 182--191, Montreal, Canada, 1996.

[4751] Fukunaga, K. Introduction to Statistical Pattern Recognition. Academic Press, New York, 1990.

[4752] Garofalakis, M. N. and Rastogi, R. and Shim, K. SPIRIT: Sequential Pattern Mining with Regular Expression Constraints. VLDB99, pages 223--234, Edinburgh, Scotland, 1999.

[4753] Gehrke, J. and Ramakrishnan, R. and Ganti, V. RainForest---A Framework for Fast Decision Tree Construction of Large Datasets. Data Mining and Knowledge Discovery, 4(2/3):127--162, 2000.

[4754] Clark Glymour and David Madigan and Daryl Pregibon and Padhraic Smyth. Statistical Themes and Lessons for Data Mining. Data Mining and Knowledge Discovery, 1(1):11--28, 1997.

[4755] Robert L. Grossman and Mark F. Hornick and Gregor Meyer. Data mining standards initiatives. Communications of the ACM, 45(8):59-61, 2002.

[4756] Gunopulos, D. and Khardon, R. and Mannila, H. and Toivonen, H. Data Mining, Hypergraph Transversals, and Machine Learning. PODS97, pages 209--216, Tucson, AZ, 1997.

[4757] Han, E.-H. and Karypis, G. and Kumar, V. Min-Apriori: An Algorithm for Finding Association Rules in Data with Continuous Attributes. http://www.cs.umn.edu/han, 1997.

[4758] Han, E.-H. and Karypis, G. and Kumar, V. Scalable Parallel Data Mining for Association Rules. SIGMOD97, pages 277--288, Tucson, AZ, 1997.

[4759] Han, E.-H. and Karypis, G. and Kumar, V. Text Categorization Using Weight Adjusted k-Nearest Neighbor Classification. PAKDD01, Lyon, France, 2001.

[4760] Han, E.-H. and Karypis, G. and Kumar, V. and Mobasher, B. Clustering Based on Association Rule Hypergraphs. DMKD97, Tucson, AZ, 1997.

[4761] Han, J. and Fu, Y. Mining Multiple-Level Association Rules in Large Databases. IEEE Trans. on Knowledge and Data Engineering, 11(5):798--804, 1999.

[4762] Han, J. and Fu, Y. and Koperski, K. and Wang, W. and Zaďane, O. R. DMQL: A data mining query language for relational databases. DMKD96, Montreal, Canada, 1996.

[4763] Han, J. and Kamber, M. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, San Francisco, 2001.

[4764] Han, J. and Pei, J. and Yin, Y. Mining Frequent Patterns without Candidate Generation. Proc. ACM-SIGMOD Int. Conf. on Management of Data (SIGMOD'00), pages 1--12, Dallas, TX, 2000.

[4765] Jiawei Han and Russ B. Altman and Vipin Kumar and Heikki Mannila and Daryl Pregibon. Emerging scientific applications in data mining. Communications of the ACM, 45(8):54-58, 2002.

[4766] Hand, D. J. Data Mining: Statistics and More?. The American Statistician, 52(2):112--118, 1998.

[4767] Hand, D. J. and Mannila, H. and Smyth, P. Principles of Data Mining. MIT Press, 2001.

[4768] Hastie, T. and Tibshirani, R. Classification by pairwise coupling. Annals of Statistics, 26(2):451--471, 1998.

[4769] Hastie, T. and Tibshirani, R. and Friedman, J. H. The Elements of Statistical Learning: Data Mining, Inference, Prediction. Springer, New York, 2001.

[4770] Hearst, M. Trends & Controversies: Support Vector Machines. IEEE Intelligent Systems, 13(4):18--28, 1998.

[4771] Heath, D. and Kasif, S. and Salzberg, S. Induction of Oblique Decision Trees. Proc. of the 13th Intl. Joint Conf. on Artificial Intelligence, pages 1002--1007, Chambery, France, 1993.

[4772] Heckerman, D. Bayesian Networks for Data Mining. Data Mining and Knowledge Discovery, 1(1):79--119, 1997.

[4773] Hidber, C. Online Association Rule Mining. SIGMOD99, pages 145--156, Philadelphia, PA, 1999.

[4774] Hilderman, R. J. and Hamilton, H. J. Knowledge Discovery and Measures of Interest. Kluwer Academic Publishers, 2001.

[4775] Hipp, J. and Guntzer, U. and Nakhaeizadeh, G. Algorithms for Association Rule Mining---A General Survey. SigKDD Explorations, 2(1):58--64, 2000.

[4776] Hofmann, H. and Siebes, A. P. J. M. and Wilhelm, A. F. X. Visualizing Association Rules with Interactive Mosaic Plots. KDD00, pages 227--235, Boston, MA, 2000.

[4777] Holt, J. D. and Chung, S. M. Efficient Mining of Association Rules in Text Databases. CIKM99, pages 234--242, Kansas City, Missouri, 1999.

[4778] Holte, R. C. Very Simple Classification Rules Perform Well on Most Commonly Used Data sets. Machine Learning, 11:63--91, 1993.

[4779] Houtsma, M. and Swami, A. Set-oriented Mining for Association Rules in Relational Databases. ICDE95, pages 25--33, Taipei, Taiwan, 1995.

[4780] Huang, Y. and Shekhar, S. and Xiong, H. Discovering Co-location Patterns from Spatial Datasets: A General Approach. IEEE Trans. on Knowledge and Data Engineering, 16(12):1472--1485, 2004.

[4781] Imielinski, T. and Virmani, A. and Abdulghani, A. DataMine: Application Programming Interface and Query Language for Database Mining. KDD96, pages 256--262, Portland, Oregon, 1996.

[4782] Inokuchi, A. and Washio, T. and Motoda, H. An Apriori-based Algorithm for Mining Frequent Substructures from Graph Data. PKDD00, pages 13--23, Lyon, France, 2000.

[4783] Jain, A. K. and Duin, R. P. W. and Mao, J. Statistical Pattern Recognition: A Review. IEEE Tran. Patt. Anal. and Mach. Intellig., 22(1):4--37, 2000.

[4784] Japkowicz, N. The Class Imbalance Problem: Significance and Strategies. Proc. of the 2000 Intl. Conf. on Artificial Intelligence: Special Track on Inductive Learning, pages 111--117, Las Vegas, NV, 2000.

[4785] Jaroszewicz, S. and Simovici, D. Interestingness of Frequent Itemsets Using Bayesian Networks as Background Knowledge. KDD04, pages 178--186, Seattle, WA, 2004.

[4786] Jensen, D. and Cohen, P. R. Multiple Comparisons in Induction Algorithms. Machine Learning, 38(3):309--338, 2000.

[4787] Joshi, M. V. On Evaluating Performance of Classifiers for Rare Classes. ICDM02, Maebashi City, Japan, 2002.

[4788] Joshi, M. V. and Agarwal, R. C. and Kumar, V. Mining Needles in a Haystack: Classifying Rare Classes via Two-Phase Rule Induction. SIGMOD01, pages 91-102, Santa Barbara, CA, 2001.

[4789] Joshi, M. V. and Agarwal, R. C. and Kumar, V. Predicting rare classes: can boosting make any weak learner strong?. KDD02, pages 297-306, Edmonton, Canada, 2002.

[4790] Joshi, M. V. and Karypis, G. and Kumar, V. A Universal Formulation of Sequential Patterns. Proc. of the KDD'2001 workshop on Temporal Data Mining, San Francisco, CA, 2001.

[4791] Joshi, M. V. and Karypis, G. and Kumar, V. ScalParC: A New Scalable and Efficient Parallel Classification Algorithm for Mining Large Datasets. Proc. of 12th Intl. Parallel Processing Symp. (IPPS/SPDP), pages 573-579, Orlando, FL, 1998.

[4792] Joshi, M. V. and Kumar, V. CREDOS: Classification Using Ripple Down Structure (A Case for Rare Classes). SDM04, pages 321-332, Orlando, FL, 2004.

[4793] Kamber, M. and Shinghal, R. Evaluating the Interestingness of Characteristic Rules. KDD96, pages 263--266, Portland, Oregon, 1996.

[4794] Kantardzic, M. Data Mining: Concepts, Models, Methods, and Algorithms. Wiley-IEEE Press, Piscataway, NJ, 2003.

[4795] Kass, G. V. An Exploratory Technique for Investigating Large Quantities of Categorical Data. Applied Statistics, 29:119--127, 1980.

[4796] Kim, B. and Landgrebe, D. Hierarchical decision classifiers in high-dimensional and large class data. IEEE Trans. on Geoscience and Remote Sensing, 29(4):518--528, 1991.

[4797] Klemettinen, M. A Knowledge Discovery Methodology for Telecommunication Network Alarm Databases. PhD thesis, University of Helsinki, 1999.

[4798] Kohavi, R. A Study on Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. Proc. of the 15th Intl. Joint Conf. on Artificial Intelligence, pages 1137--1145, Montreal, Canada, 1995.

[4799] Kong, E. B. and Dietterich, T. G. Error-Correcting Output Coding Corrects Bias and Variance. ICML95, pages 313--321, Tahoe City, CA, 1995.

[4800] Kosters, W. A. and Marchiori, E. and Oerlemans, A. Mining Clusters with Association Rules. The 3rd Symp. on Intelligent Data Analysis (IDA99), pages 39--50, Amsterdam, 1999.

[4801] Kubat, M. and Matwin, S. Addressing the Curse of Imbalanced Training Sets: One Sided Selection. ICML97, pages 179--186, Nashville, TN, 1997.

[4802] Kulkarni, S. R. and Lugosi, G. and Venkatesh, S. S. Learning Pattern Classification---A Survey. IEEE Tran. Inf. Theory, 44(6):2178--2206, 1998.

[4803] Kumar, V. and Joshi, M. V. and Han, E.-H. and Tan, P. N. and Steinbach, M. High Performance Data Mining. High Performance Computing for Computational Science (VECPAR 2002), pages 111-125. Springer, 2002.

[4804] Kuok, C. M. and Fu, A. and Wong, M. H. Mining Fuzzy Association Rules in Databases. ACM SIGMOD Record, 27(1):41--46, 1998.

[4805] Kuramochi, M. and Karypis, G. Discovering Frequent Geometric Subgraphs. ICDM02, pages 258--265, Maebashi City, Japan, 2002.

[4806] Kuramochi, M. and Karypis, G. Frequent Subgraph Discovery. ICDM01, pages 313--320, San Jose, CA, 2001.

[4807] Diane Lambert. What Use is Statistics for Massive Data?. ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, pages 54-62, 2000.

[4808] Landeweerd, G. and Timmers, T. and Gersema, E. and Bins, M. and Halic, M. Binary tree versus single level tree classification of white blood cells. Pattern Recognition, 16:571--577, 1983.

[4809] Langley, P. and Iba, W. and Thompson, K. An analysis of Bayesian classifiers. Proc. of the 10th National Conf. on Artificial Intelligence, pages 223--228, 1992.

[4810] Lee, W. and Stolfo, S. J. and Mok, K. W. Adaptive Intrusion Detection: A Data Mining Approach. Artificial Intelligence Review, 14(6):533--567, 2000.

[4811] Lent, B. and Swami, A. and Widom, J. Clustering Association Rules. ICDE97, pages 220--231, Birmingham, U.K, 1997.

[4812] Lewis, D. D. Naive Bayes at Forty: The Independence Assumption in Information Retrieval. Proc. of the 10th European Conf. on Machine Learning (ECML 1998), pages 4--15, 1998.

[4813] Li, W. and Han, J. and Pei, J. CMAR: Accurate and Efficient Classification Based on Multiple Class-association Rules. ICDM01, pages 369--376, San Jose, CA, 2001.

[4814] Liu, B. and Hsu, W. and Chen, S. Using General Impressions to Analyze Discovered Classification Rules. KDD97, pages 31--36, Newport Beach, CA, 1997.

[4815] Liu, B. and Hsu, W. and Ma, Y. Integrating Classification and Association Rule Mining. KDD98, pages 80--86, New York, NY, 1998.

[4816] Liu, B. and Hsu, W. and Ma, Y. Mining association rules with multiple minimum supports. KDD99, pages 125--134, San Diego, CA, 1999.

[4817] Liu, B. and Hsu, W. and Ma, Y. Pruning and Summarizing the Discovered Associations. KDD99, pages 125--134, San Diego, CA, 1999.

[4818] Mangasarian, O. Data Mining via Support Vector Machines. Technical report, Technical Report 01-05, Data Mining Institute, 2001.

[4819] Mannila, H. and Toivonen, H. and Verkamo, A. I. Discovery of Frequent Episodes in Event Sequences. Data Mining and Knowledge Discovery, 1(3):259--289, 1997.

[4820] Marcus, A. and Maletic, J. I. and Lin, K.-I. Ordinal association rules for error identification in data sets. CIKM01, pages 589--591, Atlanta, GA, 2001.

[4821] Margineantu, D. D. and Dietterich, T. G. Learning Decision Trees for Loss Minimization in Multi-Class Problems.Technical report, 99-30-03, Oregon State University, 1999.

[4822] Megiddo, N. and Srikant, R. Discovering Predictive Association Rules. KDD98, pages 274--278, New York, 1998.

[4823] Mehta, M. and Agrawal, R. and Rissanen, J. SLIQ: A Fast Scalable Classifier for Data Mining. Proc. of the 5th Intl. Conf. on Extending Database Technology, pages 18--32, Avignon, France, 1996.

[4824] Meo, R. and Psaila, G. and Ceri, S. A New SQL-like Operator for Mining Association Rules. VLDB96, pages 122--133, Bombay, India, 1996.

[4825] Michalski, R. S. A theory and methodology of inductive learning. Artificial Intelligence, 20:111--116, 1983.

[4826] Michalski, R. S. and Mozetic, I. and Hong, J. and Lavrac, N. The Multi-Purpose Incremental Learning System AQ15 and Its Testing Application to Three Medical Domains. Proc. of 5th National Conf. on Artificial Intelligence, Orlando, 1986.

[4827] Michie, D. and Spiegelhalter, D. J. and Taylor, C. C. Machine Learning, Neural and Statistical Classification. Ellis Horwood, Upper Saddle River, NJ, 1994.

[4828] Miller, R. J. and Yang, Y. Association Rules over Interval Data. SIGMOD97, pages 452--461, Tucson, AZ, 1997.

[4829] Mingers, J. An empirical comparison of pruning methods for decision tree induction. Machine Learning, 4:227--243, 1989.

[4830] Mingers, J. Expert Systems---Rule Induction with Statistical Data. J Operational Research Society, 38:39--47, 1987.

[4831] Mitchell, T. Machine Learning. McGraw-Hill, Boston, MA, 1997.

[4832] Moret, B. M. E. Decision Trees and Diagrams. Computing Surveys, 14(4):593--623, 1982.

[4833] Morimoto, Y. and Fukuda, T. and Matsuzawa, H. and Tokuyama, T. and Yoda, K. Algorithms for mining association rules for binary segmentations of huge categorical databases. VLDB98, pages 380--391, New York, 1998.

[4834] Mosteller, F. Association and Estimation in Contingency Tables. Journal of the American Statistical Association, 63:1--28, 1968.

[4835] Mueller, A. Fast sequential and parallel algorithms for association rule mining: A comparison. Technical report, CS-TR-3515, University of Maryland, 1995.

[4836] Muggleton, S. Foundations of Inductive Logic Programming. Prentice Hall, Englewood Cliffs, NJ, 1995.

[4837] Murthy, S. K. Automatic Construction of Decision Trees from Data: A Multi-Disciplinary Survey. Data Mining and Knowledge Discovery, 2(4):345--389, 1998.

[4838] Murthy, S. K. and Kasif, S. and Salzberg, S. A system for induction of oblique decision trees. J of Artificial Intelligence Research, 2:1--33, 1994.

[4839] Ng, R. T. and Lakshmanan, L. V. S. and Han, J. and Pang, A. Exploratory Mining and Pruning Optimizations of Constrained Association Rules. SIGMOD98, pages 13--24, Seattle, WA, 1998.

[4840] Niblett, T. Constructing decision trees in noisy domains. Proc. of the 2nd European Working Session on Learning, pages 67--78, Bled, Yugoslavia, 1987.

[4841] Niblett, T. and Bratko, I. Learning Decision Rules in Noisy Domains. In Bramer, M., editors, Research and Development in Expert Systems III, Cambridge, 1986. Cambridge University Press.

[4842] Omiecinski, E. Alternative Interest Measures for Mining Associations in Databases. IEEE Trans. on Knowledge and Data Engineering, 15(1):57--69, 2003.

[4843] Ozden, B. and Ramaswamy, S. and Silberschatz, A. Cyclic Association Rules. DE98, pages 412--421, Orlando, FL, 1998.

[4844] Ozgur, A. and Tan, P. N. and Kumar, V. RBA: An Integrated Framework for Regression based on Association Rules. SDM04, pages 210--221, Orlando, FL, 2004.

[4845] Park, J. S. and Chen, M.-S. and Yu, P. S. An effective hash-based algorithm for mining association rules. SIGMOD Record, 25(2):175--186, 1995.

[4846] Parr Rud, O. Data Mining Cookbook: Modeling Data for Marketing, Risk and Customer Relationship Management. John Wiley & Sons, New York, NY, 2001.

[4847] Parthasarathy, S. and Coatney, M. Efficient Discovery of Common Substructures in Macromolecules. ICDM02, pages 362--369, Maebashi City, Japan, 2002.

[4848] Pasquier, N. and Bastide, Y. and Taouil, R. and Lakhal, L. Discovering frequent closed itemsets for association rules. Proc. of the 7th Intl. Conf. on Database Theory (ICDT'99), pages 398--416, Jerusalem, Israel, 1999.

[4849] Pattipati, K. R. and Alexandridis, M. G. Application of heuristic search and information theory to sequential fault diagnosis. IEEE Trans. on Systems, Man, and Cybernetics, 20(4):872--887, 1990.

[4850] Pei, J. and Han, J. and Lu, H. J. and Nishio, S. and Tang, S. H-Mine: Hyper-Structure Mining of Frequent Patterns in Large Databases. ICDM01, pages 441--448, San Jose, CA, 2001.

[4851] Pei, J. and Han, J. and Mortazavi-Asl, B. and Chen, Q. and Dayal, U. and Hsu, M. PrefixSpan: Mining Sequential Patterns efficiently by prefix-projected pattern growth. Proc of the 17th Intl. Conf. on Data Engineering, Heidelberg, Germany, 2001.

[4852] Pei, J. and Han, J. and Mortazavi-Asl, B. and Zhu, H. Mining Access Patterns Efficiently from Web Logs. PAKDD00, pages 396--407, Kyoto, Japan, 2000.

[4853] Piatetsky-Shapiro, G. Discovery, Analysis and Presentation of Strong Rules. In G. Piatetsky-Shapiro and W. Frawley, editors, Knowledge Discovery in Databases, pages 229--248. MIT Press, Cambridge, MA, 1991.

[4854] Potter, C. and Klooster, S. and Steinbach, M. and Tan, P. N. and Kumar, V. and Shekhar, S. and Carvalho, C. Understanding Global Teleconnections of Climate to Regional Model Estimates of Amazon Ecosystem Carbon Fluxes. Global Change Biology, 10(5):693--703, 2004.

[4855] Potter, C. and Klooster, S. and Steinbach, M. and Tan, P. N. and Kumar, V. and Shekhar, S. and Myneni, R. and Nemani, R. Global Teleconnections of Ocean Climate to Terrestrial Carbon Flux. J. Geophysical Research, 108(D17), 2003.

[4856] Provost, F. J. and Fawcett, T. Analysis and Visualization of Classifier Performance: Comparison under Imprecise Class and Cost Distributions. KDD97, pages 43--48, Newport Beach, CA, 1997.

[4857] Pyle, D. Business Modeling and Data Mining. Morgan Kaufmann, San Francisco, CA, 2003.

[4858] Quinlan, J. R. C4.5: Programs for Machine Learning. Morgan-Kaufmann Publishers, San Mateo, CA, 1993.

[4859] Quinlan, J. R. Discovering rules by induction from large collection of examples. In Michie, D., editors, Expert Systems in the Micro Electronic Age. Edinburgh University Press, Edinburgh, UK, 1979.

[4860] Quinlan, J. R. Simplifying Decision Trees. Intl. J. Man-Machine Studies, 27:221--234, 1987.

[4861] Quinlan, J. R. and Rivest, R. L. Inferring Decision Trees Using the Minimum Description Length Principle. Information and Computation, 80(3):227--248, 1989.

[4862] Naren Ramakrishnan and Ananth Grama. Data Mining: From Serendipity to Science---Guest Editors' Introduction. IEEE Computer, 32(8):34-37, 1999.

[4863] Ramkumar, G. D and Ranka, S. and Tsur, S. Weighted Association Rules: Model and Algorithm. http://www.cs.ucla.edu/czdemo/tsur/, 1997.

[4864] Ramoni, M. and Sebastiani, P. Robust Bayes classifiers. Artificial Intelligence, 125:209--226, 2001.

[4865] van Rijsbergen, C. J. Information Retrieval. Butterworth-Heinemann, Newton, MA, 1978.

[4866] Roiger, R. and Geatz, M. Data Mining: A Tutorial Based Primer. Addison-Wesley, 2002.

[4867] Safavian, S. R. and Landgrebe, D. A Survey of Decision Tree Classifier Methodology. IEEE Trans. Systems, Man and Cybernetics, 22:660--674, 1998.

[4868] Sarawagi, S. and Thomas, S. and Agrawal, R. Integrating Mining with Relational Database Systems: Alternatives and Implications. SIGMOD98, pages 343--354, Seattle, WA, 1998.

[4869] Satou, K. and Shibayama, G. and Ono, T. and Yamamura, Y. and Furuichi,E. and Kuhara, S. and Takagi, T. Finding Association Rules on Heterogeneous Genome Data. Proc. of the Pacific Symp. on Biocomputing, pages 397--408, Hawaii, 1997.

[4870] Savasere, A. and Omiecinski, E. and Navathe, S. An efficient algorithm for mining association rules in large databases. Proc. of the 21st Int. Conf. on Very Large Databases (VLDB`95), pages 432-444, Zurich, Switzerland, 1995.

[4871] A. Savasere and E. Omiecinski and S. Navathe. Mining for Strong Negative Associations in a Large Database of Customer Transactions. ICDE98, pages 494--502, Orlando, Florida, 1998.

[4872] Schaffer, C. Overfitting avoidence as bias. Machine Learning, 10:153--178, 1993.

[4873] Schapire, R. E. The Boosting Approach to Machine Learning: An Overview. MSRI Workshop on Nonlinear Estimation and Classification, 2002.

[4874] Schölkopf, B. and Smola, A. J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, 2001.

[4875] Schuermann, J. and Doster, W. A decision-theoretic approach in hierarchical classifier design. Pattern Recognition, 17:359--369, 1984.

[4876] Advances in Distributed and Parallel Knowledge Discovery. AAAI Press, 2002.

[4877] Advances in Knowledge Discovery and Data Mining.. AAAI/MIT Press, 1996.

[4878] Rakesh Agrawal and Johannes Gehrke and Dimitrios Gunopulos and Prabhakar Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. In Laura M. Haas and Ashutosh Tiwary, editors, SIGMOD98, pages 94--105, Seattle, Washington, 1998. ACM Press.

[4879] Ming-Syan Chen and Jiawei Han and Philip S. Yu. Data Mining: An Overview from a Database Perspective. IEEE Transactions on Knowledge abd Data Engineering, 8(6):866-883, 1996.

[4880] Seno, M. and Karypis, G. LPMiner: An Algorithm for Finding Frequent Itemsets Using Length-Decreasing Support Constraint. ICDM01, pages 505--512, San Jose, CA, 2001.

[4881] Seno, M. and Karypis, G. SLPMiner: An Algorithm for Finding Frequent Sequential Patterns Using Length-Decreasing Support Constraint. ICDM02, pages 418--425, Maebashi City, Japan, 2002.

[4882] Shafer, J. C. and Agrawal, R. and Mehta, M. SPRINT: A Scalable Parallel Classifier for Data Mining. VLDB96, pages 544--555, Bombay, India, 1996.

[4883] Shintani, T. and Kitsuregawa, M. Hash based parallel algorithms for mining association rules. Proc of the 4th Intl. Conf. on Parallel and Distributed Info. Systems, pages 19--30, Miami Beach, FL, 1996.

[4884] Silberschatz, A. and Tuzhilin, A. What makes patterns interesting in knowledge discovery systems. IEEE Trans. on Knowledge and Data Engineering, 8(6):970--974, 1996.

[4885] Silverstein, C. and Brin, S. and Motwani, R. Beyond market baskets: Generalizing association rules to dependence rules. Data Mining and Knowledge Discovery, 2(1):39--68, 1998.

[4886] Simpson, E.-H. The Interpretation of Interaction in Contingency Tables. Journal of the Royal Statistical Society, B(13):238--241, 1951.

[4887] Singh, L. and Chen, B. and Haight, R. and Scheuermann, P. An Algorithm for Constrained Association Rule Mining in Semi-structured Data. PAKDD99, pages 148--158, Beijing, China, 1999.

[4888] Smyth, P. and Goodman, R. M. An Information Theoretic Approach to Rule Induction from Databases. IEEE Trans. on Knowledge and Data Engineering, 4(4):301--316, 1992.

[4889] Padhraic Smyth. Breaking out of the Black-Box: Research Challenges in Data Mining. DMKD01, 2001.

[4890] Padhraic Smyth and Daryl Pregibon and Christos Faloutsos. Data-driven evolution of data mining algorithms. Communications of the ACM, 45(8):33-37, 2002.

[4891] Srikant, R. and Agrawal, R. Mining Generalized Association Rules. VLDB95, pages 407--419, Zurich, Switzerland, 1995.

[4892] Srikant, R. and Agrawal, R. Mining Quantitative Association Rules in Large Relational Tables. SIGMOD96, pages 1--12, Montreal, Canada, 1996.

[4893] Srikant, R. and Agrawal, R. Mining Sequential Patterns: Generalizations and Performance Improvements. Proc. of the 5th Intl Conf. on Extending Database Technology (EDBT'96), pages 18--32, Avignon, France, 1996.

[4894] Srikant, R. and Vu, Q. and Agrawal, R. Mining Association Rules with Item Constraints. KDD97, pages 67--73, Newport Beach, CA, 1997.

[4895] Steinbach, M. and Tan, P. N. and Kumar, V. Support Envelopes: A Technique for Exploring the Structure of Association Patterns. KDD04, pages 296--305, Seattle, WA, 2004.

[4896] Steinbach, M. and Tan, P. N. and Xiong, H. and Kumar, V. Extending the Notion of Support. KDD04, pages 689--694, Seattle, WA, 2004.

[4897] Suzuki, E. Autonomous Discovery of Reliable Exception Rules. KDD97, pages 259--262, Newport Beach, CA, 1997.

[4898] Tan, P. N. and Kumar, V. Mining Association Patterns in Web Usage Data. Proc. of the Intl. Conf. on Advances in Infrastructure for e-Business, e-Education, e-Science and e-Medicine on the Internet, L'Aquila, Italy, 2002.

[4899] Tan, P. N. and Kumar, V. and Srivastava, J. Indirect Association: Mining Higher Order Dependencies in Data. PKDD00, pages 632--637, Lyon, France, 2000.

[4900] Tan, P. N. and Kumar, V. and Srivastava, J. Selecting the Right Interestingness Measure for Association Patterns. KDD02, pages 32--41, Edmonton, Canada, 2002.

[4901] Tan, P. N. and Steinbach, M. and Kumar, V. and Klooster, S. and Potter, C. and Torregrosa, A. Finding Spatio-Temporal Patterns in Earth Science Data. KDD 2001 Workshop on Temporal Data Mining, San Francisco, CA, 2001.

[4902] Tax, D. M. J. and Duin, R. P. W. Using Two-Class Classifiers for Multiclass Classification. Proc. of the 16th Intl. Conf. on Pattern Recognition (ICPR 2002), pages 124--127, Quebec, Canada, 2002.

[4903] Teng, W. G. and Hsieh, M. J. and Chen, M.-S. On the Mining of Substitution Rules for Statistically Dependent Items. ICDM02, pages 442--449, Maebashi City, Japan, 2002.

[4904] Toivonen, H and Klemettinen, M. and Ronkainen, P. and Hatonen, K. and Mannila, H. Pruning and Grouping Discovered Association Rules. ECML-95 Workshop on Statistics, Machine Learning and Knowledge Discovery in Databases, pages 47 -- 52, Heraklion, Greece, 1995.

[4905] Toivonen, H. Sampling Large Databases for Association Rules. VLDB96, pages 134--145, Bombay, India, 1996.

[4906] Tsur, S. and Ullman, J. and Abiteboul, S. and Clifton, C. and Motwani, R. and Nestorov, S. and Rosenthal, A. Query Flocks: A Generalization of Association Rule Mining. SIGMOD98, pages 1--12, Seattle, WA, 1998.

[4907] Tung, Anthony and Lu, H. J. and Han, Jiawei and Feng, Ling. Breaking the Barrier of Transactions: Mining Inter-Transaction Association Rules. KDD99, pages 297--301, San Diego, CA, 1999.

[4908] Utgoff, P. E. and Brodley, C. E. An incremental method for finding multivariate splits for decision trees. ICML90, pages 58--65, Austin, TX, 1990.

[4909] Vapnik, V. Statistical Learning Theory. John Wiley & Sons, New York, 1998.

[4910] Vapnik, V. The Nature of Statistical Learning Theory. Springer Verlag, New York, 1995.

[4911] Wang, H. and Zaniolo, C. CMP: A Fast Decision Tree Classifier Using Multivariate Predictions. ICDE00, pages 449--460, San Diego, CA, 2000.

[4912] Wang, K. and He, Y. and Han, J. Mining Frequent Itemsets Using Support Constraints. VLDB00, pages 43--52, Cairo, Egypt, 2000.

[4913] Wang, K. and Tay, S. H. and Liu, B. Interestingness-Based Interval Merger for Numeric Association Rules. KDD98, pages 121--128, New York, NY, 1998.

[4914] Wang, Q. R. and Suen, C. Y. Large tree classifier with heuristic search and global training. IEEE Trans. on Pattern Analysis and Machine Intelligence, 9(1):91--102, 1987.

[4915] Webb, A. R. Statistical Pattern Recognition. John Wiley & Sons, 2nd edition, 2002.

[4916] Webb, G. I. Discovering associations with numeric variables. KDD01, pages 383--388, San Francisco, CA, 2001.

[4917] Webb, G. I. Preliminary investigations into statistically valid exploratory rule discovery. Proc. of the Australasian Data Mining Workshop (AusDM03), Canberra, Australia, 2003.

[4918] Weiss, G. M. Mining with Rarity: A Unifying Framework. SIGKDD Explorations, 6(1):7--19, 2004.

[4919] Witten, I. H. and Frank, E. Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, 1999.

[4920] Wu, X. and Zhang, C. and Zhang, S. Mining Both Positive and Negative Association Rules. ACM Trans. on Information Systems, 22(3):381--405, 2004.

[4921] Xindong Wu and Philip S. Yu and Gregory Piatetsky-Shapiro. Data Mining: How Research Meets Practical Development?. Knowledge and Information Systems, 5(2):248-261, 2003.

[4922] Xiong, H. and He, X. and Ding, C. and Zhang, Y. and Kumar, V. and Holbrook, S. R. Identification of Functional Modules in Protein Complexes via Hyperclique Pattern Discovery. Proc. of the Pacific Symposium on Biocomputing, (PSB 2005), Maui, 2005.

[4923] Xiong, H. and Shekhar, S. and Tan, P. N. and Kumar, V. Exploiting a Support-based Upper Bound of Pearson's Correlation Coefficient for Efficiently Identifying Strongly Correlated Pairs. KDD04, pages 334-343, Seattle, WA, 2004.

[4924] Xiong, H. and Steinbach, M. and Tan, P. N. and Kumar, V. HICAP: Hierarchial Clustering with Pattern Preservation. SDM04, pages 279--290, Orlando, FL, 2004.

[4925] Xiong, H. and Tan, P. N. and Kumar, V. Mining Strong Affinity Association Patterns in Data Sets with Skewed Support Distribution. ICDM03, pages 387--394, Melbourne, FL, 2003.

[4926] Yan, X. and Han, J. gSpan: Graph-based Substructure Pattern Mining. ICDM02, pages 721--724, Maebashi City, Japan, 2002.

[4927] Yang, C. and Fayyad, U. M. and Bradley, P. S. Efficient discovery of error-tolerant frequent itemsets in high dimensions. KDD01, pages 194--203, San Francisco, CA, 2001.

[4928] Zadrozny, B. and Langford, J. C. and Abe, N. Cost-Sensitive Learning by Cost-Proportionate Example Weighting. ICDM03, pages 435--442, Melbourne, FL, 2003.

[4929] Zaki, M. J. Efficiently mining frequent trees in a forest. KDD02, pages 71--80, Edmonton, Canada, 2002.

[4930] Zaki, M. J. Generating Non-Redundant Association Rules. KDD00, pages 34--43, Boston, MA, 2000.

[4931] Zaki, M. J. Parallel and Distributed Association Mining: A Survey. IEEE Concurrency, special issue on Parallel Mechanisms for Data Mining, 7(4):14--25, 1999.

[4932] Zaki, M. J. and Orihara, M. Theoretical foundations of association rules. DMKD98, Seattle, WA, 1998.

[4933] Zaki, M. J. and Parthasarathy, S. and Ogihara, M. and Li, W. New Algorithms for Fast Discovery of Association Rules. KDD97, pages 283--286, Newport Beach, CA, 1997.

[4934] Zhang, H. and Padmanabhan, B. and Tuzhilin, A. On the Discovery of Significant Statistical Quantitative Rules. KDD04, pages 374--383, Seattle, WA, 2004.

[4935] Zhang, Z. and Lu, Y. and Zhang, B. An Effective Partioning-Combining Algorithm for Discovering Quantitative Association Rules. PAKDD97, Singapore, 1997.

[4936] Data Mining for Scientific and Engineering Applications. Kluwer Academic Publishers, 2001.

[4937] "C. Clifton and M. Kantarcioglu and J. Vaidya. Defining privacy for data mining. National Science Foundation Workshop on Next Generation Data Mining, pages 126--133, Baltimore, MD, 2002.

[4938] Large-Scale Parallel Data Mining. Springer, 2002.

[4939] Rakesh Agrawal and Ramakrishnan Srikant. Privacy-preserving data mining. SIGMOD00, pages 439--450, Dallas, Texas, 2000. ACM Press.

[4940] Mark S. Aldenderfer and Roger K. Blashfield. Cluster Analysis. Sage Publications, Los Angeles, 1985.

[4941] Michael R. Anderberg. Cluster Analysis for Applications. Academic Press, New York, 1973.

[4510] Andrews, R. and Diederich, J. and Tickle, A. A Survey and Critique of Techniques For Extracting Rules From Trained Artificial Neural Networks. Knowledge Based Systems, 8(6):373--389, 1995.

[4942] Phipps Arabie and Lawrence Hubert and G. De Soete. An overview of combinatorial data analysis. In P. Arabie and L. Hubert and G. De Soete, editors, Clustering and Classification, pages 188--217. World Scientific, Singapore, 1996.

[4943] G. Ball and D. Hall. A Clustering Technique for Summarizing Multivariate Data. Behavior Science, 12:153--155, 1967.

[4944] A. Banerjee and S. Merugu and I. S. Dhillon and J. Ghosh. Clustering with Bregman Divergences. In Michael W. Berry and Umeshwar Dayal and Chandrika Kamath and David Skillicorn, editors, SDM04, pages 234--245, Lake Buena Vista, FL, 2004.

[4945] Hans Hermann Bock and Edwin Diday. Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data (Studies in Classification, Data Analysis, and Knowledge Organization). Springer-Verlag Telos, 2000.

[4946] Ingwer Borg and Patrick Groenen. Modern Multidimensional Scaling---Theory and Applications. Springer-Verlag, 1997.

[4947] William G. Cochran. Sampling Techniques. John Wiley & Sons, 3rd edition, 1977.

[4948] James W. Demmel. Applied Numerical Linear Algebra. Society for Industrial & Applied Mathematics, 1997.

[4949] Pedro Domingos and Geoff Hulten. Mining high-speed data streams. KDD00, pages 71--80, Boston, Massachusetts, 2000. ACM Press.

[4950] Gaohua Gu, Feifang Hu and Huan Liu. Sampling and Its Application in Data Mining: A Survey. Technical report, TRA6/00, National University of Singapore, Singapore, 2000.

[4951] C. Giannella and J. Han and J. Pei and X. Yan and P. S. Yu. Mining Frequent Patterns in Data Streams at Multiple Time Granularities. In H. Kargupta and A. Joshi and K. Sivakumar and Y. Yesha, editors, Next Generation Data Mining, pages 191-212. AAAI/MIT, 2003.

[4952] D. J. Hand. Statistics and the Theory of Measurement. Journal of the Royal Statistical Society: Series A (Statistics in Society), 159(3):445-492, 1996.

[4953] Hillol Kargupta and Souptik Datta and Qi Wang and Krishnamoorthy Sivakumar. On the Privacy Preserving Properties of Random Data Perturbation Techniques. ICDM03, pages 99-106, Melbourne, Florida, 2003. IEEE Computer Society.

[4954] Daniel Kifer and Shai Ben-David and Johannes Gehrke. Detecting Change in Data Streams. VLDB04, pages 180-191, Toronto, Canada, 2004. Morgan Kaufmann.

[4955] David Krantz and R. Duncan Luce and Patrick Suppes and Amos Tversky. Foundations of Measurements: Volume 1: Additive and polynomial representations. Academic Press, New York, 1971.

[4956] Martin H. C. Law and Nan Zhang and Anil K. Jain. Nonlinear Manifold Learning for Data Streams.In Michael W. Berry and Umeshwar Dayal and Chandrika Kamath and David Skillicorn, editors, SDM04, Lake Buena Vista, Florida, 2004. SIAM.

[4957] B. W. Lindgren. Statistical Theory. CRC Press, 1993.

[4958] R. Duncan Luce and David Krantz and Patrick Suppes and Amos Tversky. Foundations of Measurements: Volume 3: Representation, Axiomatization, and Invariance. Academic Press, New York, 1990.

[4959] F. Olken and D. Rotem. Random Sampling from Databases---A Survey. Statistics & Computing, 5(1):25--42, 1995.

[4960] Jason Osborne. Notes on the Use of Data Transformations. Practical Assessment, Research & Evaluation, 28(6), 2002.

[4961] Christopher R. Palmer and Christos Faloutsos. Density biased sampling: An improved method for data mining and clustering. ACM SIGMOD Record, 29(2):82--92, 2000.

[4962] Spiros Papadimitriou and Anthony Brockwell and Christos Faloutsos. Adaptive, unsupervised stream mining. VLDB Journal, 13(3):222-239, 2004.

[4963] Foster J. Provost and David Jensen and Tim Oates. Efficient Progressive Sampling. KDD99, pages 23--32, 1999.

[4964] Stanley Smith Stevens. Measurement. In Gary Michael Maranell, editors, Scaling: A Sourcebook for Behavioral Scientists, pages 22--41. Aldine Publishing Co., Chicago, 1974.

[4965] Stanley Smith Stevens. On the Theory of Scales of Measurement. Science, 103(2684):677--680, 1946.

[4966] Patrick Suppes and David Krantz and R. Duncan Luce and Amos Tversky. Foundations of Measurements: Volume 2: Geometrical, Threshold, and Probabilistic Representations. Academic Press, New York, 1989.

[4967] Hannu Toivonen. Sampling Large Databases for Association Rules. In T. M. Vijayaraman and Alejandro P. Buchmann and C. Mohan and Nandlal L. Sarda, editors, VLDB96, pages 134--145, 1996. Morgan Kaufman.

[4968] John W. Tukey. On the Comparative Anatomy of Transformations. Annals of Mathematical Statistics, 28(3):602--632, 1957.

[4969] Vassilios S. Verykios and Elisa Bertino and Igor Nai Fovino and Loredana Parasiliti Provenza and Yucel Saygin and Yannis Theodoridis. State-of-the-art in privacy preserving data mining. SIGMOD Record, 33(1):50--57, 2004.

[4970] Richard Y. Wang and Mostapha Ziad and Yang W. Lee and Y. Richard Wang. Data Quality of The Kluwer International Series on Advances in Database Systems, Volume 23. Kluwer Academic Publishers, 2001.

[4971] Mohammed Javeed Zaki and Srinivasan Parthasarathy and Wei Li and Mitsunori Ogihara. Evaluation of Sampling for Data Mining of Association Rules. Technical report, TR617, Rensselaer Polytechnic Institute, 1996.

[4972] Feature Extraction, Construction and Selection: A Data Mining Perspective of Kluwer International Series in Engineering and Computer Science, 453. Kluwer Academic Publishers, 1998.

[4973] MIT Total Data Quality Management Program. web.mit.edu/tdqm/www/index.shtml, 2003.

[4974] Mihael Ankerst and Markus M. Breunig and Hans-Peter Kriegel and Jörg Sander. OPTICS: Ordering Points To Identify the Clustering Structure. In Alex Delis and Christos Faloutsos and Shahram Ghandeharizadeh, editors, SIGMOD99, pages 49--60, Philadelphia, Pennsylvania, 1999. ACM Press.

[4975] Daniel Barbará. Requirements for clustering data streams. SIGKDD Explorations Newsletter, 3(2):23--27, 2002.

[4976] Pavel Berkhin. Survey Of Clustering Data Mining Techniques. Technical report, Accrue Software, San Jose, CA, 2002.

[4977] J. Bilmes. A Gentle Tutorial on the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models. Technical report, ICSI-TR-97-021, University of California at Berkeley, 1997.

[4978] C. M. Bishop and M. Svensen and C. K. I. Williams. GTM: A principled alternative to the self-organizing map. In C. von der Malsburg and W. von Seelen and J. C. Vorbruggen and B. Sendhoff, editors, Artificial Neural Networks---ICANN96. Intl. Conf, Proc., pages 165-170. Springer-Verlag, Berlin, Germany, 1996.

[4979] Avrim Blum and Pat Langley. Selection of Relevant Features and Examples in Machine Learning. Artificial Intelligence, 97(1--2):245--271, 1997.

[4980] Daniel Boley. Principal Direction Divisive Partitioning. Data Mining and Knowledge Discovery, 2(4):325-344, 1998.

[4981] Paul S. Bradley and Usama M. Fayyad. Refining Initial Points for K-Means Clustering. In Jude W. Shavlik, editors, ICML98, pages 91--99, Madison, WI, 1998. Morgan Kaufmann Publishers Inc.

[4982] Paul S. Bradley and Usama M. Fayyad and Cory Reina. Scaling Clustering Algorithms to Large Databases. In Rakesh Agrawal and Paul Stolorz and Gregory Piatetsky-Shapiro, editors, KDD98, pages 9--15, New York City, 1998. AAAI Press.

[4983] Peter Cheeseman and James Kelly and Matthew Self and John Stutz and Will Taylor and Don Freeman. AutoClass: a Bayesian classification system. Readings in knowledge acquisition and learning: automating the construction and improvement of expert systems, pages 431--441. Morgan Kaufmann Publishers Inc., 1993.

[4984] James Dougherty and Ron Kohavi and Mehran Sahami. Supervised and Unsupervised Discretization of Continuous Features. ICML95, pages 194--202, 1995.

[4985] Duda, Robert O. and Hart, Peter E. and Stork, David G. Pattern Classification. John Wiley & Sons, Inc., New York, Second edition, 2001.

[4986] Tapio Elomaa and Juho Rousu. General and Efficient Multisplitting of Numerical Attributes. Machine Learning, 36(3):201--244, 1999.

[4987] Levent Ertöz and Michael Steinbach and Vipin Kumar. A New Shared Nearest Neighbor Clustering Algorithm and its Applications. Workshop on Clustering High Dimensional Data and its Applications, Proc. of Text Mine'01, First SIAM Intl. Conf. on Data Mining, Chicago, IL, USA, 2001.

[4988] Levent Ertöz and Michael Steinbach and Vipin Kumar. Finding Clusters of Different Sizes, Shapes, and Densities in Noisy, High Dimensional Data. SDM03, San Francisco, 2003. SIAM.

[4989] Martin Ester and Hans-Peter Kriegel and Jörg Sander and Michael Wimmer and Xiaowei Xu. Incremental Clustering for Mining in a Data Warehousing Environment. In Ashish Gupta and Oded Shmueli and Jennifer Widom, editors, VLDB98, pages 323--333, New York City, 1998. Morgan Kaufmann.

[4990] Martin Ester and Hans-Peter Kriegel and Jorg Sander and Xiaowei Xu. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Evangelos Simoudi and Jiawei Han and Usama M. Fayyad, editors, KDD96, pages 226--231, Portland, Oregon, 1996. AAAI Press.

[4991] Brian S. Everitt and Sabine Landau and Morven Leese. Cluster Analysis. Arnold Publishers, London, Fourth edition, 2001.

[4992] U. M. Fayyad and K. B. Irani. Multi-interval discretization of continuousvalued attributes for classification learning. Proc. 13th Int. Joint Conf. on Artificial Intelligence, pages 1022--1027, 1993. Morgan Kaufman.

[4993] Douglas Fisher. Iterative Optimization and Simplification of Hierarchical Clusterings. Journal of Artificial Intelligence Research, 4:147--179, 1996.

[4994] Douglas Fisher and Pat Langley. Conceptual clustering and its relation to numerical taxonomy. Artificial Intelligence and Statistics, :77--116, 1986.

[4995] Chris Fraley and Adrian E. Raftery. How Many Clusters? Which Clustering Method? Answers Via Model-Based Cluster Analysis. The Computer Journal, 41(8):578--588, 1998.

[4996] Venkatesh Ganti and Johannes Gehrke and Raghu Ramakrishnan. CACTUS--Clustering Categorical Data Using Summaries. KDD99, pages 73--83, 1999. ACM Press.

[4997] Allen Gersho and Robert M. Gray. Vector Quantization and Signal Compression, volume 159 of Kluwer International Series in Engineering and Computer Science. Kluwer Academic Publishers, 1992.

[4998] Joydeep Ghosh. Scalable Clustering Methods for Data Mining. In Nong Ye, editors, Handbook of Data Mining, pages 247--277. Lawrence Ealbaum Assoc, 2003.

[4999] David Gibson and Jon M. Kleinberg and Prabhakar Raghavan. Clustering Categorical Data: An Approach Based on Dynamical Systems. VLDB Journal, 8(3--4):222--236, 2000.

[5000] K. C. Gowda and G. Krishna. Agglomerative Clustering Using the Concept of Mutual Nearest Neighborhood. Pattern Recognition, 10(2):105--112, 1978.

[5001] Sudipto Guha and Adam Meyerson and Nina Mishra and Rajeev Motwani and Liadan O'Callaghan. Clustering Data Streams: Theory and Practice. IEEE Transactions on Knowledge and Data Engineering, 15(3):515--528, 2003.

[5002] Sudipto Guha and Rajeev Rastogi and Kyuseok Shim. CURE: An Efficient Clustering Algorithm for Large Databases. In Laura M. Haas and Ashutosh Tiwary, editors, SIGMOD98, pages 73--84, 1998. ACM Press.

[5003] Sudipto Guha and Rajeev Rastogi and Kyuseok Shim. ROCK: A Robust Clustering Algorithm for Categorical Attributes. In Masaru Kitsuregawa and Leszek Maciaszek and Mike Papazoglou and Calton Pu, editors, ICDE99, pages 512--521, 1999. IEEE Computer Society.

[5004] Maria Halkidi and Yannis Batistakis and Michalis Vazirgiannis. Cluster validity methods: part I. SIGMOD Record (ACM Special Interest Group on Management of Data), 31(2):40--45, 2002.

[5005] Maria Halkidi and Yannis Batistakis and Michalis Vazirgiannis. Clustering validity checking methods: part II. SIGMOD Record (ACM Special Interest Group on Management of Data), 31(3):19--27, 2002.

[5006] Greg Hamerly and Charles Elkan. Alternatives to the k-means algorithm that find better clusterings. CIKM02, pages 600--607, McLean, Virginia, 2002. ACM Press.

[5007] Jiawei Han and Micheline Kamber and Anthony Tung. Spatial Clustering Methods in Data Mining: A review. In Harvey J. Miller and Jiawei Han, editors, Geographic Data Mining and Knowledge Discovery, pages 188--217. Taylor and Francis, London, 2001.

[5008] John Hartigan. Clustering Algorithms. Wiley, New York, 1975.

[5009] Alexander Hinneburg and Daniel A. Keim. Optimal Grid-Clustering: Towards Breaking the Curse of Dimensionality in High-Dimensional Clustering. In M. P. Atkinson and M. E. Orlowska and P. Valduriez and S. B. Zdonik and M. L. Brodie, editors, VLDB99, pages 506--517, Edinburgh, Scotland, UK, 1999. Morgan Kaufmann.

[5010] Alexander Hinneburg and Daniel. A. Keim. An Efficient Approach to Clustering in Large Multimedia Databases with Noise. In Rakesh Agrawal and Paul Stolorz, editors, KDD98, pages 58--65, New York City, 1998. AAAI Press.

[5011] F. Hussain and H. Liu and C. L. Tan and M. Dash. TRC6/99: Discretization: an enabling technique. Technical report, National University of Singapore, Singapore, 1999.

[5012] Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data of Prentice Hall Advanced Reference Series. Prentice Hall, 1988. Book available online at http://www.cse.msu.edu/ : jain/Clustering_Jain_Dubes.pdf.

[5013] Anil K. Jain and M. Narasimha Murty and Patrick J. Flynn. Data clustering: A review. ACM Computing Surveys, 31(3):264--323, 1999.

[5014] Nicolas Jardine and Robin Sibson. Mathematical Taxonomy. Wiley, New York, 1971.

[5015] R. A. Jarvis and E. A. Patrick. Clustering Using a Similarity Measure Based on Shared Nearest Neighbors. IEEE Transactions on Computers, C-22(11):1025-1034, 1973.

[5016] I. T. Jolliffe. Principal Component Analysis. Springer Verlag, 2nd edition, 2002.

[5017] Istvan Jonyer and Diane J. Cook and Lawrence B. Holder. Graph-based hierarchical conceptual clustering. Journal of Machine Learning Research, 2:19--43, 2002.

[5018] Karin Kailing and Hans-Peter Kriegel and Peer Kröger. Density-Connected Subspace Clustering for High-Dimensional Data. In Michael W. Berry and Umeshwar Dayal and Chandrika Kamath and David B. Skillicorn, editors, SDM04, pages 428--439, Lake Buena Vista, Florida, 2004. SIAM.

[5019] George Karypis and Eui-Hong Han and Vipin Kumar. CHAMELEON: A Hierarchical Clustering Algorithm Using Dynamic Modeling. IEEE Computer, 32(8):68--75, 1999.

[5020] George Karypis and Eui-Hong Han and Vipin Kumar. Multilevel Refinement for Hierarchical Clustering. Technical report, TR 99-020, University of Minnesota, Minneapolis, MN, 1999.

[5021] George Karypis and Vipin Kumar. Multilevel k-way Partitioning Scheme for Irregular Graphs. Journal of Parallel and Distributed Computing, 48(1):96-129, 1998.

[5022] Leonard Kaufman and Peter J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster Analysis of Wiley Series in Probability and Statistics. John Wiley and Sons, New York, 1990.

[5023] Jon M. Kleinberg. An Impossibility Theorem for Clustering. Proc. of the 16th Annual Conf. on Neural Information Processing Systems, 2002.

[5024] Ron Kohavi and George H. John. Wrappers for Feature Subset Selection. Artificial Intelligence, 97(1--2):273--324, 1997.

[5025] Teuvo Kohonen and Thomas S. Huang and Manfred R. Schroeder. Self-Organizing Maps. Springer-Verlag, 2000.

[5026] Joseph B. Kruskal and Eric M. Uslaner. Multidimensional Scaling. Sage Publications, 1978.

[5027] Bjornar Larsen and Chinatsu Aone. Fast and Effective Text Mining Using Linear-Time Document Clustering. KDD99, pages 16--22, San Diego, California, 1999. ACM Press.

[5028] H. Liu and H. Motoda and L. Yu. Feature Extraction, Selection, and Construction. In Nong Ye, editors, The Handbook of Data Mining, pages 22--41. Lawrence Erlbaum Associates, Inc., Mahwah, NJ, 2003.

[5029] Huan Liu and Hiroshi Motoda. Feature Selection for Knowledge Discovery and Data Mining of Kluwer International Series in Engineering and Computer Science, 454. Kluwer Academic Publishers, 1998.

[5030] J. MacQueen. Some methods for classification and analysis of multivariate observations. In Le Cam, L. M. and Neyman, J., editors, Proc. of the 5th Berkeley Symp. on Mathematical Statistics and Probability, pages 281--297, 1967. University of California Press.

[5031] Michalski, R. S. and Stepp, R. E. Automated Construction of Classifications: Conceptual Clustering Versus Numerical Taxonomy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 5(4):396--409, 1983.

[5032] Glen W. Milligan. Clustering Validation: Results and Implications for Applied Analyses. In P. Arabie and L. Hubert and G. De Soete, editors, Clustering and Classification, pages 345--375. World Scientific, Singapore, 1996.

[5033] Boris Mirkin. Mathematical Classification and Clustering, volume 11 of Nonconvex Optimization and Its Applications. Kluwer Academic Publishers, 1996.

[5034] Nina Mishra and Dana Ron and Ram Swaminathan. A New Conceptual Clustering Framework. Machine Learning Journal, 56(1--3):115--151, 2004.

[5035] Luis Carlos Molina and Lluis Belanche and Angela Nebot. Feature Selection Algorithms: A Survey and Experimental Evaluation. ICDM02, 2002.

[5036] Fionn Murtagh. Clustering massive data sets. In J. Abello and P. M. Pardalos and M. G. C. Reisende, editors, Handbook of Massive Data Sets. Kluwer, 2000.

[5037] Fionn Murtagh. Multidimensional Clustering Algorithms. Physica-Verlag, Heidelberg and Vienna, 1985.

[5038] Harsha Nagesh and Sanjay Goil and Alok Choudhary. Parallel Algorithms for Clustering High-Dimensional Large-Scale Datasets. In Robert L. Grossman and Chandrika Kamath and Philip Kegelmeyer and Vipin Kumar and Raju Namburu, editors, Data Mining for Scientific and Engineering Applications, pages 335--356. Kluwer Academic Publishers, Dordrecht, Netherlands, 2001.

[5039] Raymond T. Ng and Jiawei Han. CLARANS: A Method for Clustering Objects for Spatial Data Mining. IEEE Transactions on Knowledge and Data Engineering, 14(5):1003--1016, 2002.

[5040] Dan Pelleg and Andrew W. Moore. X -means: Extending K -means with Efficient Estimation of the Number of Clusters. ICML00, pages 727--734, 2000. Morgan Kaufmann, San Francisco, CA.

[5041] Markus Peters and Mohammed J. Zaki. CLICKS: Clustering Categorical Data using K-partite Maximal Cliques. ICDE05, Tokyo, Japan, 2005.

[5042] Thomas C. Redman. Data Quality: The Field Guide. Digital Press, 2001.

[5043] Charles Romesburg. Cluster Analysis for Researchers. Life Time Learning, Belmont, CA, 1984.

[5044] J. Sander and M. Ester and H.-P. Kriegel and X. Xu. Density-Based Clustering in Spatial Databases: The Algorithm GDBSCAN and its Applications. Data Mining and Knowledge Discovery, 2(2):169--194, 1998.

[5045] Sergio M. Savaresi and Daniel Boley. A comparative analysis on the bisecting K-means and the PDDP clustering algorithms. Intelligent Data Analysis, 8(4):345-362, 2004.

[5046] Erich Schikuta and Martin Erhart. The BANG-Clustering System: Grid-Based Data Analysis. In Xiaohui Liu and Paul R. Cohen and Michael R. Berthold, editors, Advances in Intelligent Data Analysis, Reasoning about Data, Second Intl. Symposium, IDA-97, London in Lecture Notes in Computer Science, pages 513--524, 1997. Springer.

[5047] Gholamhosein Sheikholeslami and Surojit Chatterjee and Aidong Zhang. Wavecluster: A multi-resolution clustering approach for very large spatial databases. In Ashish Gupta and Oded Shmueli and Jennifer Widom, editors, VLDB98, pages 428--439, New York City, 1998. Morgan Kaufmann.

[5048] Sneath, Peter H. A. and Robert R. Sokal. Numerical Taxonomy. Freeman, San Francisco, 1971.

[5049] Helmuth Späth. Cluster Analysis Algorithms for Data Reduction and Classification of Objects, volume 4 of Computers and Their Application. Ellis Horwood Publishers, Chichester, 1980. ISBN 0-85312-141-9.

[5050] Ramakrishnan Srikant and Rakesh Agrawal. Mining Quantitative Association Rules in Large Relational Tables. In H. V. Jagadish and Inderpal Singh Mumick, editors, SIGMOD96, pages 1--12, Montreal, Quebec, Canada, 1996.

[5051] Michael Steinbach and George Karypis and Vipin Kumar. A Comparison of Document Clustering Techniques. Proc. of KDD Workshop on Text Mining, Proc. of the 6th Intl. Conf. on Knowledge Discovery and Data Mining, Boston, MA, 2000.

[5052] Robert E. Stepp and Ryszard S. Michalski. Conceptual clustering of structured objects: A goal-oriented approach. Artificial Intelligence, 28(1):43--69, 1986.

[5053] Alexander Strehl and Joydeep Ghosh. A Scalable Approach to Balanced, High-dimensional Clustering of Market-Baskets. Proc. of the 7th Intl. Conf. on High Performance Computing (HiPC 2000) in Lecture Notes in Computer Science, pages 525--536, Bangalore, India, 2000. Springer.

[5054] Charles T. Zahn. Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters. IEEE Transactions on Computers, C-20(1):68-86, 1971.

[5055] Tian Zhang and Raghu Ramakrishnan and Miron Livny. BIRCH: an efficient data clustering method for very large databases. In H. V. Jagadish and Inderpal Singh Mumick, editors, SIGMOD96, pages 103--114, Montreal, Quebec, Canada, 1996. ACM Press.

[5056] CLUTO 2.1.1: Software for Clustering High-Dimensional Datasets. /www.cs.umn.edu/ : karypis, 2003.

[4629] Agrawal, R. and Imielinski, T. and Swami, A. Database mining: A performance perspective. IEEE Transactions on Knowledge and Data Engineering, 5:914--925, 1993.

[5057] P. S. Bradley and U. M. Fayyad and C. Reina. Scaling EM (Expectation Maximization) Clustering to Large Databases. Technical report, MSR-TR-98-35, Microsoft Research, 1999.

[5058] D. A. Burn. Designing Effective Statistical Graphs. In C. R. Rao, editors, Handbook of Statistics 9. Elsevier/North-Holland, Amsterdam, The Netherlands, 1993.

[5059] Inderjit S. Dhillon and Yuqiang Guan and J. Kogan. Iterative Clustering of High Dimensional Text Data Augmented by Local Search. ICDM02, pages 131-138, 2002. IEEE Computer Society.

[5060] Inderjit S. Dhillon and Dharmendra S. Modha. Concept Decompositions for Large Sparse Text Data Using Clustering. Machine Learning, 42(1/2):143-175, 2001.

[5061] Michael Friendly. Gallery of Data Visualization. http://www.math.yorku.ca/SCS/Gallery/, 2005.

[5062] Eui-Hong Han and George Karypis and Vipin Kumar and Bamshad Mobasher. Hypergraph Based Clustering in High-Dimensional Data Sets: A Summary of Results. IEEE Data Eng. Bulletin, 21(1):15-22, 1998.

[5063] Konstantinos Kalpakis and Dhiral Gada and Vasundhara Puttagunta. Distance Measures for Effective Clustering of ARIMA Time-Series. ICDM01, pages 273-280, 2001. IEEE Computer Society.

[5064] Eamonn J. Keogh and Michael J. Pazzani. Scaling up dynamic time warping for datamining applications. Proc. of the 10th Intl. Conf. on Knowledge Discovery and Data Mining, pages 285-289, 2000.

[5065] Robert Spence. Information Visualization. ACM Press, New York, 2000.

[5066] Michael Steinbach and Pang-Ning Tan and Vipin Kumar and Steven Klooster and Christopher Potter. Discovery of climate indices using clustering. KDD '03: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 446--455, New York, NY, USA, 2003. ACM Press.

[5067] Edward R. Tufte. The Visual Display of Quantitative Information. Graphics Press, Cheshire, CT, 1986.

[5068] John W. Tukey. Exploratory data analysis. Addison-Wesley, 1977.

[5069] Velleman, Paul and Hoaglin, David. The ABC's of EDA: Applications, Basics, and Computing of Exploratory Data Analysis. Duxbury, 1981.

[5070] Bin Zhang and Meichun Hsu and Umeshwar Dayal. K-Harmonic Means---A Data Clustering Algorithm. Technical report, HPL-1999-124, Hewlett Packard Laboratories, 1999.

[5071] Ying Zhao and George Karypis. Empirical and theoretical comparisons of selected criterion functions for document clustering. Machine Learning, 55(3):311--331, 2004.

[5072] Information Visualization in Data Mining and Knowledge Discovery. Morgan Kaufmann Publishers, San Francisco, CA, 2001.

[5073] Mathematica 5.1. Wolfram Research, Inc.. http://www.wolfram.com/, 2005.

[5074] MATLAB 7.0. The MathWorks, Inc.. http://www.mathworks.com, 2005.

[5075] Microsoft Excel 2003. Microsoft, Inc.. http://www.microsoft.com/, 2003.

[4651] Agarwal, R. C. and Shafer, J. C. Parallel Mining of Association Rules. IEEE Transactions on Knowledge and Data Engineering, 8(6):962--969, 1998.

[4652] Aggarwal, C. C. and Sun, Z. and Yu, P. S. Online Generation of Profile Association Rules. KDD98, pages 129--133, New York, NY, 1996.

[4653] Aggarwal, C. C. and Yu, P. S. Mining Associations with the Collective Strength Approach. IEEE Trans. on Knowledge and Data Engineering, 13(6):863--873, 2001.

[4654] Aggarwal, C. C. and Yu, P. S. Mining Large Itemsets for Association Rules. Data Engineering Bulletin, 21(1):23--31, 1998.

[4655] Agrawal, R. and Imielinski, T. and Swami, A. Mining association rules between sets of items in large databases. Proc. ACM SIGMOD Intl. Conf. Management of Data, pages 207--216, Washington, DC, 1993.

[4656] Agrawal, R. and Srikant, R. Mining Sequential Patterns. Proc. of Intl. Conf. on Data Engineering, pages 3--14, Taipei, Taiwan, 1995.

[4657] Aha, D. W. A study of instance-based algorithms for supervised learning tasks: mathematical, empirical, and psychological evaluations. PhD thesis, University of California, Irvine, 1990.

[4658] Ali, K. and Manganaris, S. and Srikant, R. Partial Classification using Association Rules. KDD97, pages 115--118, Newport Beach, CA, 1997.

[4659] Alsabti, K. and Ranka, S. and Singh, V. CLOUDS: A Decision Tree Classifier for Large Datasets. KDD98, pages 2--8, New York, NY, 1998.

[4660] Aumann, Y. and Lindell, Y. A Statistical Theory for Quantitative Association Rules. KDD99, pages 261--270, San Diego, CA, 1999.

[5076] E. F. Codd and S. B. Codd and C. T. Smalley. Providing OLAP (On-line Analytical Processing) to User- Analysts: An IT Mandate. White Paper, E.F. Codd and Associates, 1993.

[5077] Jim Gray and Surajit Chaudhuri and Adam Bosworth and Andrew Layman and Don Reichart and Murali Venkatrao and Frank Pellow and Hamid Pirahesh. Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals. Journal Data Mining and Knowledge Discovery, 1(1):29--53, 1997.

[5078] Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems. McGraw-Hill, 3rd edition, 2002.

[5079] Arie Shoshani. OLAP and statistical databases: similarities and differences. Proc. of the Sixteenth ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems, pages 185--196, 1997. ACM Press.

[5080] Zhong, N. and Yao, Y. Y. and Ohsuga, S. Peculiarity Oriented Multi-database Mining. PKDD99, pages 136--146, Prague, Czech Republic, 1999.

[5081] R: A language and environment for statistical computing and graphics. The R Project for Statistical Computing. http://www.r-project.org/, 2005.

[4679] Allwein, E. L. and Schapire, R. E. and Singer, Y. Reducing Multiclass to Binary: A Unifying Approach to Margin Classifiers. Journal of Machine Learning Research, 1:113--141, 2000.

[4680] Antonie, M-L. and Zaďane, O. R. Mining Positive and Negative Association Rules: An Approach for Confined Rules. PKDD04, pages 27--38, Pisa, Italy, 2004.

[5082] S-PLUS. Insightful Corporation. http://www.insightful.com, 2005.

[5083] SAS: Statistical Analysis System. SAS Institute Inc.. http://www.sas.com/, 2005.

[4683] Ayres, J. and Flannick, J. and Gehrke, J. and Yiu, T. Sequential Pattern mining using a bitmap representation. KDD02, pages 429-435, Edmonton, Canada, 2002.

[4684] Barbará, D. and Couto, J. and Jajodia, S. and Wu, N. ADAM: A Testbed for Exploring the Use of Data Mining in Intrusion Detection. SIGMOD Record, 30(4):15--24, 2001.

[4685] Bay, S. D. and Pazzani, M. Detecting Group Differences: Mining Contrast Sets. Data Mining and Knowledge Discovery, 5(3):213--246, 2001.

[4686] Bayardo, R. Efficiently Mining Long Patterns from Databases. SIGMOD98, pages 85--93, Seattle, WA, 1998.

[4687] Bayardo, R. and Agrawal, R. Mining the Most Interesting Rules. KDD99, pages 145--153, San Diego, CA, 1999.

[4688] Benjamini, Y. and Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal Royal Statistical Society B, 57(1):289--300, 1995.

[4689] Breslow, L. A. and Aha, D. W. Simplifying Decision Trees: A Survey. Knowledge Engineering Review, 12(1):1--40, 1997.

[5084] SPSS: Statistical Package for the Social Sciences. SPSS, Inc.. http://www.spss.com/, 2005.

[4691] Bennett, K. and Campbell, C. Support Vector Machines: Hype or Hallelujah. SIGKDD Explorations, 2(2):1--13, 2000.

[4692] Berry, M. J. A. and Linoff, G. Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management. Wiley Computer Publishing, 2nd edition, 2004.

[4693] Bishop, C. M. Neural Networks for Pattern Recognition. Oxford University Press, Oxford, U.K., 1995.

[4694] Bolton, R. J. and Hand, D. J. and Adams, N. M. Determining Hit Rate in Pattern Search. Proc. of the ESF Exploratory Workshop on Pattern Detection and Discovery in Data Mining, pages 36--48, London, UK, 2002.

[4695] Boulicaut, J-F. and Bykowski, A. and Jeudy, B. Towards the Tractable Discovery of Association Rules with Negations. Proc. of the 4th Intl. Conf on Flexible Query Answering Systems FQAS'00, pages 425--434, Warsaw, Poland, 2000.

[4696] Bradley, A. P. The use of the area under the ROC curve in the Evaluation of Machine Learning Algorithms. Pattern Recognition, 30(7):1145--1149, 1997.

[4697] Paul S. Bradley and Johannes Gehrke and Raghu Ramakrishnan and Ramakrishnan Srikant. Scaling mining algorithms to large databases. Communications of the ACM, 45(8):38-43, 2002.

[4698] Breiman, L. Bagging Predictors. Machine Learning, 24(2):123--140, 1996.

[4699] Breiman, L. Bias, Variance, and Arcing Classifiers. Technical report, 486, University of California, Berkeley, CA, 1996.

[4700] Breiman, L. Random Forests. Machine Learning, 45(1):5--32, 2001.

[4701] Breiman, L. and Friedman, J. H. and Olshen, R. and Stone, C. J. Classification and Regression Trees. Chapman & Hall, New York, 1984.

[4702] Brin, S. and Motwani, R. and Silverstein, C. Beyond market baskets: Generalizing association rules to correlations. Proc. ACM SIGMOD Intl. Conf. Management of Data, pages 265--276, Tucson, AZ, 1997.

[4703] Brin, S. and Motwani, R. and Ullman, J. and Tsur, S. Dynamic Itemset Counting and Implication Rules for market basket data. SIGMOD97, pages 255--264, Tucson, AZ, 1997.

[4704] Buntine, W. Learning classification trees. In Hand, D. J., editors, Artificial Intelligence Frontiers in Statistics, pages 182--201, 1993. Chapman & Hall, London.

[4705] Burges, C. J. C. A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 2(2):121--167, 1998.

[4706] Cai, C. H. and Fu, A. and Cheng, C. H. and Kwong, W. W. Mining Association Rules with Weighted Items. Proc. of IEEE Intl. Database Engineering and Applications Symp., pages 68--77, Cardiff, Wales, 1998.

[4707] Cant u' -Paz, E. and Kamath, C. Using evolutionary algorithms to induce oblique decision trees. Proc. of the Genetic and Evolutionary Computation Conf., pages 1053--1060, San Francisco, CA, 2000.

[4708] Chakrabarti, S. Mining the Web: Discovering Knowledge from Hypertext Data. Morgan Kaufmann, San Francisco, CA, 2003.

[4709] Chawla, N. V. and Bowyer, K. W. and Hall, L. O. and Kegelmeyer, W. P. SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16:321--357, 2002.

[4710] Chawla, N. V. and Japkowicz, N. and Kolcz, A. Editorial: Special Issue on Learning from Imbalanced Data Sets. SIGKDD Explorations, 6(1):1--6, 2004.

[4711] Chen, Q. and Dayal, U. and Hsu, M. A Distributed OLAP infrastructure for E-Commerce. Proc. of the 4th IFCIS Intl. Conf. on Cooperative Information Systems, pages 209--220, Edinburgh, Scotland, 1999.

[4712] Cheng, H. and Yan, X. and Han, J. IncSpan: incremental mining of sequential patterns in large database. KDD04, pages 527-532, Seattle, WA, 2004.

[4713] Cherkassky, V. and Mulier, F. Learning from Data: Concepts, Theory, and Methods. Wiley Interscience, 1998.

[4714] Cheung, D. C. and Lee, S. D. and Kao, B. A General Incremental Technique for Maintaining Discovered Association Rules. Proc. of the 5th Intl. Conf. on Database Systems for Advanced Applications, pages 185--194, Melbourne, Australia, 1997.

[4715] Clark, P. and Boswell, R. Rule Induction with CN2: Some Recent Improvements. Machine Learning: Proc. of the 5th European Conf. (EWSL-91), pages 151--163, 1991.

[4716] Clark, P. and Niblett, T. The CN2 Induction Algorithm. Machine Learning, 3(4):261--283, 1989.

[4717] Cohen, W. W. Fast Effective Rule Induction. ICML95, pages 115--123, Tahoe City, CA, 1995.

[4718] Cooley, R. and Tan, P. N. and Srivastava, J. Discovery of Interesting Usage Patterns from Web Data. In Spiliopoulou, M. and Masand, B., editors, Advances in Web Usage Analysis and User Profiling, pages 163--182. Lecture Notes in Computer Science, 2000.

[4719] Cost, S. and Salzberg, S. A Weighted Nearest Neighbor Algorithm for Learning with Symbolic Features. Machine Learning, 10:57--78, 1993.

[4720] Cover, T. M. and Hart, P. E. Nearest Neighbor Pattern Classification. Knowledge Based Systems, 8(6):373--389, 1995.

[4721] Cristianini, N. and Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, 2000.

[4722] Dietterich, T. G. Ensemble Methods in Machine Learning. First Intl. Workshop on Multiple Classifier Systems, Cagliari, Italy, 2000.

[4723] Dietterich, T. G. and Bakiri, G. Solving Multiclass Learning Problems via Error-Correcting Output Codes. Journal of Artificial Intelligence Research, 2:263--286, 1995.

[4724] Dokas, P. and Ertöz, L. and Kumar, V. and Lazarevic, A. and Srivastava, J. and Tan, P. N. Data Mining for Network Intrusion Detection. Proc. NSF Workshop on Next Generation Data Mining, Baltimore, MD, 2002.

[4725] Domingos, P. MetaCost: A General Method for Making Classifiers Cost-Sensitive. KDD99, pages 155--164, San Diego, CA, 1999.

[4726] Domingos, P. The RISE system: Conquering without separating. Proc. of the 6th IEEE Intl. Conf. on Tools with Artificial Intelligence, pages 704--707, New Orleans, LA, 1994.

[4727] Domingos, P. The Role of Occam's Razor in Knowledge Discovery. Data Mining and Knowledge Discovery, 3(4):409--425, 1999.

[4728] Domingos, P. and Pazzani, M. On the Optimality of the Simple Bayesian Classifier under Zero-One Loss. Machine Learning, 29(2-3):103--130, 1997.

[4729] Dong, G. and Li, J. Efficient Mining of Emerging Patterns: Discovering Trends and Differences. KDD99, pages 43--52, San Diego, CA, 1999.

[4730] Dong, G. and Li, J. Interestingness of discovered association rules in terms of neighborhood-based unexpectedness. PAKDD98, pages 72--86, Melbourne, Australia, 1998.

[4731] Drummond, C. and Holte, R. C. C4.5, Class imbalance, and Cost sensitivity: Why under-sampling beats over-sampling. ICML'2004 Workshop on Learning from Imbalanced Data Sets II, Washington, DC, 2003.

[4732] Duda, R. O. and Hart, P. E. and Stork, D. G. Pattern Classification. John Wiley & Sons, Inc., New York, 2nd edition, 2001.

[4733] DuMouchel, W. and Pregibon, D. Empirical Bayes Screening for Multi-Item Associations. KDD01, pages 67--76, San Francisco, CA, 2001.

[4734] Dunham, M. H. Data Mining: Introductory and Advanced Topics. Prentice Hall, 2002.

[4735] Dunkel, B. and Soparkar, N. Data Organization and Access for Efficient Data Mining. ICDE99, pages 522--529, Sydney, Australia, 1999.

[4736] Efron, B. and Tibshirani, R. Cross-validation and the Bootstrap: Estimating the Error Rate of a Prediction Rule. Technical report, Stanford University, 1995.

[4737] Elkan, C. The Foundations of Cost-Sensitive Learning. Proc. of the 17th Intl. Joint Conf. on Artificial Intelligence, pages 973--978, Seattle, WA, 2001.

[4738] Esposito, F. and Malerba, D. and Semeraro, G. A Comparative Analysis of Methods for Pruning Decision Trees. IEEE Trans. Pattern Analysis and Machine Intelligence, 19(5):476--491, 1997.

[4739] F u ¨ rnkranz, J. and Widmer, G. Incremental reduced error pruning. ICML94, pages 70--77, New Brunswick, NJ, 1994.

[4740] Fabris, C. C. and Freitas, A. A. Discovering surprising patterns by detecting occurrences of Simpson's paradox. Proc. of the 19th SGES Intl. Conf. on Knowledge-Based Systems and Applied Artificial Intelligence), pages 148--160, Cambridge, UK, 1999.

[4741] Fan, W. and Stolfo, S. J. and Zhang, J. and Chan, P. K. AdaCost: misclassification cost-sensitive boosting. ICML99, pages 97--105, Bled, Slovenia, 1999.

[4742] Usama M. Fayyad and Gregory Piatetsky-Shapiro and Padhraic Smyth. From Data Mining to Knowledge Discovery: An Overview. Advances in Knowledge Discovery and Data Mining, pages 1-34. AAAI Press, 1996.

[4743] Feng, L. and Lu, H. J. and Yu, J. X. and Han, J. Mining inter-transaction associations with templates. CIKM99, pages 225--233, Kansas City, Missouri, 1999.

[4744] Ferri, C. and Flach, P. and Hernandez-Orallo, J. Learning Decision Trees Using the Area Under the ROC Curve. ICML02, pages 139--146, Sydney, Australia, 2002.

[4745] Fisher, R. A. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7:179--188, 1936.

[4746] Freitas, A. A. Understanding the crucial differences between classification and discovery of association rules---a position paper. SIGKDD Explorations, 2(1):65--69, 2000.

[4747] Freund, Y. and Schapire, R. E. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119--139, 1997.

[4748] Friedman, J. H. Data Mining and Statistics: What's the Connection?. Unpublished. www-stat.stanford.edu/ : jhf/ftp/dm-stat.ps, 1997.

[4749] Friedman, J. H. and Fisher, N. I. Bump hunting in high-dimensional data. Statistics and Computing, 9(2):123--143, 1999.

[4750] Fukuda, T. and Morimoto, Y. and Morishita, S. and Tokuyama, T. Mining Optimized Association Rules for Numeric Attributes. PODS96, pages 182--191, Montreal, Canada, 1996.

[4751] Fukunaga, K. Introduction to Statistical Pattern Recognition. Academic Press, New York, 1990.

[4752] Garofalakis, M. N. and Rastogi, R. and Shim, K. SPIRIT: Sequential Pattern Mining with Regular Expression Constraints. VLDB99, pages 223--234, Edinburgh, Scotland, 1999.

[4753] Gehrke, J. and Ramakrishnan, R. and Ganti, V. RainForest---A Framework for Fast Decision Tree Construction of Large Datasets. Data Mining and Knowledge Discovery, 4(2/3):127--162, 2000.

[4754] Clark Glymour and David Madigan and Daryl Pregibon and Padhraic Smyth. Statistical Themes and Lessons for Data Mining. Data Mining and Knowledge Discovery, 1(1):11--28, 1997.

[4755] Robert L. Grossman and Mark F. Hornick and Gregor Meyer. Data mining standards initiatives. Communications of the ACM, 45(8):59-61, 2002.

[4756] Gunopulos, D. and Khardon, R. and Mannila, H. and Toivonen, H. Data Mining, Hypergraph Transversals, and Machine Learning. PODS97, pages 209--216, Tucson, AZ, 1997.

[4757] Han, E.-H. and Karypis, G. and Kumar, V. Min-Apriori: An Algorithm for Finding Association Rules in Data with Continuous Attributes. http://www.cs.umn.edu/han, 1997.

[4758] Han, E.-H. and Karypis, G. and Kumar, V. Scalable Parallel Data Mining for Association Rules. SIGMOD97, pages 277--288, Tucson, AZ, 1997.

[4759] Han, E.-H. and Karypis, G. and Kumar, V. Text Categorization Using Weight Adjusted k-Nearest Neighbor Classification. PAKDD01, Lyon, France, 2001.

[4760] Han, E.-H. and Karypis, G. and Kumar, V. and Mobasher, B. Clustering Based on Association Rule Hypergraphs. DMKD97, Tucson, AZ, 1997.

[4761] Han, J. and Fu, Y. Mining Multiple-Level Association Rules in Large Databases. IEEE Trans. on Knowledge and Data Engineering, 11(5):798--804, 1999.

[4762] Han, J. and Fu, Y. and Koperski, K. and Wang, W. and Zaďane, O. R. DMQL: A data mining query language for relational databases. DMKD96, Montreal, Canada, 1996.

[4763] Han, J. and Kamber, M. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, San Francisco, 2001.

[4764] Han, J. and Pei, J. and Yin, Y. Mining Frequent Patterns without Candidate Generation. Proc. ACM-SIGMOD Int. Conf. on Management of Data (SIGMOD'00), pages 1--12, Dallas, TX, 2000.

[4765] Jiawei Han and Russ B. Altman and Vipin Kumar and Heikki Mannila and Daryl Pregibon. Emerging scientific applications in data mining. Communications of the ACM, 45(8):54-58, 2002.

[4766] Hand, D. J. Data Mining: Statistics and More?. The American Statistician, 52(2):112--118, 1998.

[4767] Hand, D. J. and Mannila, H. and Smyth, P. Principles of Data Mining. MIT Press, 2001.

[4768] Hastie, T. and Tibshirani, R. Classification by pairwise coupling. Annals of Statistics, 26(2):451--471, 1998.

[4769] Hastie, T. and Tibshirani, R. and Friedman, J. H. The Elements of Statistical Learning: Data Mining, Inference, Prediction. Springer, New York, 2001.

[4770] Hearst, M. Trends & Controversies: Support Vector Machines. IEEE Intelligent Systems, 13(4):18--28, 1998.

[4771] Heath, D. and Kasif, S. and Salzberg, S. Induction of Oblique Decision Trees. Proc. of the 13th Intl. Joint Conf. on Artificial Intelligence, pages 1002--1007, Chambery, France, 1993.

[4772] Heckerman, D. Bayesian Networks for Data Mining. Data Mining and Knowledge Discovery, 1(1):79--119, 1997.

[4773] Hidber, C. Online Association Rule Mining. SIGMOD99, pages 145--156, Philadelphia, PA, 1999.

[4774] Hilderman, R. J. and Hamilton, H. J. Knowledge Discovery and Measures of Interest. Kluwer Academic Publishers, 2001.

[4775] Hipp, J. and Guntzer, U. and Nakhaeizadeh, G. Algorithms for Association Rule Mining---A General Survey. SigKDD Explorations, 2(1):58--64, 2000.

[4776] Hofmann, H. and Siebes, A. P. J. M. and Wilhelm, A. F. X. Visualizing Association Rules with Interactive Mosaic Plots. KDD00, pages 227--235, Boston, MA, 2000.

[4777] Holt, J. D. and Chung, S. M. Efficient Mining of Association Rules in Text Databases. CIKM99, pages 234--242, Kansas City, Missouri, 1999.

[4778] Holte, R. C. Very Simple Classification Rules Perform Well on Most Commonly Used Data sets. Machine Learning, 11:63--91, 1993.

[4779] Houtsma, M. and Swami, A. Set-oriented Mining for Association Rules in Relational Databases. ICDE95, pages 25--33, Taipei, Taiwan, 1995.

[4780] Huang, Y. and Shekhar, S. and Xiong, H. Discovering Co-location Patterns from Spatial Datasets: A General Approach. IEEE Trans. on Knowledge and Data Engineering, 16(12):1472--1485, 2004.

[4781] Imielinski, T. and Virmani, A. and Abdulghani, A. DataMine: Application Programming Interface and Query Language for Database Mining. KDD96, pages 256--262, Portland, Oregon, 1996.

[4782] Inokuchi, A. and Washio, T. and Motoda, H. An Apriori-based Algorithm for Mining Frequent Substructures from Graph Data. PKDD00, pages 13--23, Lyon, France, 2000.

[4783] Jain, A. K. and Duin, R. P. W. and Mao, J. Statistical Pattern Recognition: A Review. IEEE Tran. Patt. Anal. and Mach. Intellig., 22(1):4--37, 2000.

[4784] Japkowicz, N. The Class Imbalance Problem: Significance and Strategies. Proc. of the 2000 Intl. Conf. on Artificial Intelligence: Special Track on Inductive Learning, pages 111--117, Las Vegas, NV, 2000.

[4785] Jaroszewicz, S. and Simovici, D. Interestingness of Frequent Itemsets Using Bayesian Networks as Background Knowledge. KDD04, pages 178--186, Seattle, WA, 2004.

[4786] Jensen, D. and Cohen, P. R. Multiple Comparisons in Induction Algorithms. Machine Learning, 38(3):309--338, 2000.

[4787] Joshi, M. V. On Evaluating Performance of Classifiers for Rare Classes. ICDM02, Maebashi City, Japan, 2002.

[4788] Joshi, M. V. and Agarwal, R. C. and Kumar, V. Mining Needles in a Haystack: Classifying Rare Classes via Two-Phase Rule Induction. SIGMOD01, pages 91-102, Santa Barbara, CA, 2001.

[4789] Joshi, M. V. and Agarwal, R. C. and Kumar, V. Predicting rare classes: can boosting make any weak learner strong?. KDD02, pages 297-306, Edmonton, Canada, 2002.

[4790] Joshi, M. V. and Karypis, G. and Kumar, V. A Universal Formulation of Sequential Patterns. Proc. of the KDD'2001 workshop on Temporal Data Mining, San Francisco, CA, 2001.

[4791] Joshi, M. V. and Karypis, G. and Kumar, V. ScalParC: A New Scalable and Efficient Parallel Classification Algorithm for Mining Large Datasets. Proc. of 12th Intl. Parallel Processing Symp. (IPPS/SPDP), pages 573-579, Orlando, FL, 1998.

[4792] Joshi, M. V. and Kumar, V. CREDOS: Classification Using Ripple Down Structure (A Case for Rare Classes). SDM04, pages 321-332, Orlando, FL, 2004.

[4793] Kamber, M. and Shinghal, R. Evaluating the Interestingness of Characteristic Rules. KDD96, pages 263--266, Portland, Oregon, 1996.

[4794] Kantardzic, M. Data Mining: Concepts, Models, Methods, and Algorithms. Wiley-IEEE Press, Piscataway, NJ, 2003.

[4795] Kass, G. V. An Exploratory Technique for Investigating Large Quantities of Categorical Data. Applied Statistics, 29:119--127, 1980.

[4796] Kim, B. and Landgrebe, D. Hierarchical decision classifiers in high-dimensional and large class data. IEEE Trans. on Geoscience and Remote Sensing, 29(4):518--528, 1991.

[4797] Klemettinen, M. A Knowledge Discovery Methodology for Telecommunication Network Alarm Databases. PhD thesis, University of Helsinki, 1999.

[4798] Kohavi, R. A Study on Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. Proc. of the 15th Intl. Joint Conf. on Artificial Intelligence, pages 1137--1145, Montreal, Canada, 1995.

[4799] Kong, E. B. and Dietterich, T. G. Error-Correcting Output Coding Corrects Bias and Variance. ICML95, pages 313--321, Tahoe City, CA, 1995.

[4800] Kosters, W. A. and Marchiori, E. and Oerlemans, A. Mining Clusters with Association Rules. The 3rd Symp. on Intelligent Data Analysis (IDA99), pages 39--50, Amsterdam, 1999.

[4801] Kubat, M. and Matwin, S. Addressing the Curse of Imbalanced Training Sets: One Sided Selection. ICML97, pages 179--186, Nashville, TN, 1997.

[4802] Kulkarni, S. R. and Lugosi, G. and Venkatesh, S. S. Learning Pattern Classification---A Survey. IEEE Tran. Inf. Theory, 44(6):2178--2206, 1998.

[4803] Kumar, V. and Joshi, M. V. and Han, E.-H. and Tan, P. N. and Steinbach, M. High Performance Data Mining. High Performance Computing for Computational Science (VECPAR 2002), pages 111-125. Springer, 2002.

[4804] Kuok, C. M. and Fu, A. and Wong, M. H. Mining Fuzzy Association Rules in Databases. ACM SIGMOD Record, 27(1):41--46, 1998.

[4805] Kuramochi, M. and Karypis, G. Discovering Frequent Geometric Subgraphs. ICDM02, pages 258--265, Maebashi City, Japan, 2002.

[4806] Kuramochi, M. and Karypis, G. Frequent Subgraph Discovery. ICDM01, pages 313--320, San Jose, CA, 2001.

[4807] Diane Lambert. What Use is Statistics for Massive Data?. ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, pages 54-62, 2000.

[4808] Landeweerd, G. and Timmers, T. and Gersema, E. and Bins, M. and Halic, M. Binary tree versus single level tree classification of white blood cells. Pattern Recognition, 16:571--577, 1983.

[4809] Langley, P. and Iba, W. and Thompson, K. An analysis of Bayesian classifiers. Proc. of the 10th National Conf. on Artificial Intelligence, pages 223--228, 1992.

[4810] Lee, W. and Stolfo, S. J. and Mok, K. W. Adaptive Intrusion Detection: A Data Mining Approach. Artificial Intelligence Review, 14(6):533--567, 2000.

[4811] Lent, B. and Swami, A. and Widom, J. Clustering Association Rules. ICDE97, pages 220--231, Birmingham, U.K, 1997.

[4812] Lewis, D. D. Naive Bayes at Forty: The Independence Assumption in Information Retrieval. Proc. of the 10th European Conf. on Machine Learning (ECML 1998), pages 4--15, 1998.

[4813] Li, W. and Han, J. and Pei, J. CMAR: Accurate and Efficient Classification Based on Multiple Class-association Rules. ICDM01, pages 369--376, San Jose, CA, 2001.

[4814] Liu, B. and Hsu, W. and Chen, S. Using General Impressions to Analyze Discovered Classification Rules. KDD97, pages 31--36, Newport Beach, CA, 1997.

[4815] Liu, B. and Hsu, W. and Ma, Y. Integrating Classification and Association Rule Mining. KDD98, pages 80--86, New York, NY, 1998.

[4816] Liu, B. and Hsu, W. and Ma, Y. Mining association rules with multiple minimum supports. KDD99, pages 125--134, San Diego, CA, 1999.

[4817] Liu, B. and Hsu, W. and Ma, Y. Pruning and Summarizing the Discovered Associations. KDD99, pages 125--134, San Diego, CA, 1999.

[4818] Mangasarian, O. Data Mining via Support Vector Machines. Technical report, Technical Report 01-05, Data Mining Institute, 2001.

[4819] Mannila, H. and Toivonen, H. and Verkamo, A. I. Discovery of Frequent Episodes in Event Sequences. Data Mining and Knowledge Discovery, 1(3):259--289, 1997.

[4820] Marcus, A. and Maletic, J. I. and Lin, K.-I. Ordinal association rules for error identification in data sets. CIKM01, pages 589--591, Atlanta, GA, 2001.

[4821] Margineantu, D. D. and Dietterich, T. G. Learning Decision Trees for Loss Minimization in Multi-Class Problems.Technical report, 99-30-03, Oregon State University, 1999.

[4822] Megiddo, N. and Srikant, R. Discovering Predictive Association Rules. KDD98, pages 274--278, New York, 1998.

[4823] Mehta, M. and Agrawal, R. and Rissanen, J. SLIQ: A Fast Scalable Classifier for Data Mining. Proc. of the 5th Intl. Conf. on Extending Database Technology, pages 18--32, Avignon, France, 1996.

[4824] Meo, R. and Psaila, G. and Ceri, S. A New SQL-like Operator for Mining Association Rules. VLDB96, pages 122--133, Bombay, India, 1996.

[4825] Michalski, R. S. A theory and methodology of inductive learning. Artificial Intelligence, 20:111--116, 1983.

[4826] Michalski, R. S. and Mozetic, I. and Hong, J. and Lavrac, N. The Multi-Purpose Incremental Learning System AQ15 and Its Testing Application to Three Medical Domains. Proc. of 5th National Conf. on Artificial Intelligence, Orlando, 1986.

[4827] Michie, D. and Spiegelhalter, D. J. and Taylor, C. C. Machine Learning, Neural and Statistical Classification. Ellis Horwood, Upper Saddle River, NJ, 1994.

[4828] Miller, R. J. and Yang, Y. Association Rules over Interval Data. SIGMOD97, pages 452--461, Tucson, AZ, 1997.

[4829] Mingers, J. An empirical comparison of pruning methods for decision tree induction. Machine Learning, 4:227--243, 1989.

[4830] Mingers, J. Expert Systems---Rule Induction with Statistical Data. J Operational Research Society, 38:39--47, 1987.

[4831] Mitchell, T. Machine Learning. McGraw-Hill, Boston, MA, 1997.

[4832] Moret, B. M. E. Decision Trees and Diagrams. Computing Surveys, 14(4):593--623, 1982.

[4833] Morimoto, Y. and Fukuda, T. and Matsuzawa, H. and Tokuyama, T. and Yoda, K. Algorithms for mining association rules for binary segmentations of huge categorical databases. VLDB98, pages 380--391, New York, 1998.

[4834] Mosteller, F. Association and Estimation in Contingency Tables. Journal of the American Statistical Association, 63:1--28, 1968.

[4835] Mueller, A. Fast sequential and parallel algorithms for association rule mining: A comparison. Technical report, CS-TR-3515, University of Maryland, 1995.

[4836] Muggleton, S. Foundations of Inductive Logic Programming. Prentice Hall, Englewood Cliffs, NJ, 1995.

[4837] Murthy, S. K. Automatic Construction of Decision Trees from Data: A Multi-Disciplinary Survey. Data Mining and Knowledge Discovery, 2(4):345--389, 1998.

[4838] Murthy, S. K. and Kasif, S. and Salzberg, S. A system for induction of oblique decision trees. J of Artificial Intelligence Research, 2:1--33, 1994.

[4839] Ng, R. T. and Lakshmanan, L. V. S. and Han, J. and Pang, A. Exploratory Mining and Pruning Optimizations of Constrained Association Rules. SIGMOD98, pages 13--24, Seattle, WA, 1998.

[4840] Niblett, T. Constructing decision trees in noisy domains. Proc. of the 2nd European Working Session on Learning, pages 67--78, Bled, Yugoslavia, 1987.

[4841] Niblett, T. and Bratko, I. Learning Decision Rules in Noisy Domains. In Bramer, M., editors, Research and Development in Expert Systems III, Cambridge, 1986. Cambridge University Press.

[4842] Omiecinski, E. Alternative Interest Measures for Mining Associations in Databases. IEEE Trans. on Knowledge and Data Engineering, 15(1):57--69, 2003.

[4843] Ozden, B. and Ramaswamy, S. and Silberschatz, A. Cyclic Association Rules. DE98, pages 412--421, Orlando, FL, 1998.

[4844] Ozgur, A. and Tan, P. N. and Kumar, V. RBA: An Integrated Framework for Regression based on Association Rules. SDM04, pages 210--221, Orlando, FL, 2004.

[4845] Park, J. S. and Chen, M.-S. and Yu, P. S. An effective hash-based algorithm for mining association rules. SIGMOD Record, 25(2):175--186, 1995.

[4846] Parr Rud, O. Data Mining Cookbook: Modeling Data for Marketing, Risk and Customer Relationship Management. John Wiley & Sons, New York, NY, 2001.

[4847] Parthasarathy, S. and Coatney, M. Efficient Discovery of Common Substructures in Macromolecules. ICDM02, pages 362--369, Maebashi City, Japan, 2002.

[4848] Pasquier, N. and Bastide, Y. and Taouil, R. and Lakhal, L. Discovering frequent closed itemsets for association rules. Proc. of the 7th Intl. Conf. on Database Theory (ICDT'99), pages 398--416, Jerusalem, Israel, 1999.

[4849] Pattipati, K. R. and Alexandridis, M. G. Application of heuristic search and information theory to sequential fault diagnosis. IEEE Trans. on Systems, Man, and Cybernetics, 20(4):872--887, 1990.

[4850] Pei, J. and Han, J. and Lu, H. J. and Nishio, S. and Tang, S. H-Mine: Hyper-Structure Mining of Frequent Patterns in Large Databases. ICDM01, pages 441--448, San Jose, CA, 2001.

[4851] Pei, J. and Han, J. and Mortazavi-Asl, B. and Chen, Q. and Dayal, U. and Hsu, M. PrefixSpan: Mining Sequential Patterns efficiently by prefix-projected pattern growth. Proc of the 17th Intl. Conf. on Data Engineering, Heidelberg, Germany, 2001.

[4852] Pei, J. and Han, J. and Mortazavi-Asl, B. and Zhu, H. Mining Access Patterns Efficiently from Web Logs. PAKDD00, pages 396--407, Kyoto, Japan, 2000.

[4853] Piatetsky-Shapiro, G. Discovery, Analysis and Presentation of Strong Rules. In G. Piatetsky-Shapiro and W. Frawley, editors, Knowledge Discovery in Databases, pages 229--248. MIT Press, Cambridge, MA, 1991.

[4854] Potter, C. and Klooster, S. and Steinbach, M. and Tan, P. N. and Kumar, V. and Shekhar, S. and Carvalho, C. Understanding Global Teleconnections of Climate to Regional Model Estimates of Amazon Ecosystem Carbon Fluxes. Global Change Biology, 10(5):693--703, 2004.

[4855] Potter, C. and Klooster, S. and Steinbach, M. and Tan, P. N. and Kumar, V. and Shekhar, S. and Myneni, R. and Nemani, R. Global Teleconnections of Ocean Climate to Terrestrial Carbon Flux. J. Geophysical Research, 108(D17), 2003.

[4856] Provost, F. J. and Fawcett, T. Analysis and Visualization of Classifier Performance: Comparison under Imprecise Class and Cost Distributions. KDD97, pages 43--48, Newport Beach, CA, 1997.

[4857] Pyle, D. Business Modeling and Data Mining. Morgan Kaufmann, San Francisco, CA, 2003.

[4858] Quinlan, J. R. C4.5: Programs for Machine Learning. Morgan-Kaufmann Publishers, San Mateo, CA, 1993.

[4859] Quinlan, J. R. Discovering rules by induction from large collection of examples. In Michie, D., editors, Expert Systems in the Micro Electronic Age. Edinburgh University Press, Edinburgh, UK, 1979.

[4860] Quinlan, J. R. Simplifying Decision Trees. Intl. J. Man-Machine Studies, 27:221--234, 1987.

[4861] Quinlan, J. R. and Rivest, R. L. Inferring Decision Trees Using the Minimum Description Length Principle. Information and Computation, 80(3):227--248, 1989.

[4862] Naren Ramakrishnan and Ananth Grama. Data Mining: From Serendipity to Science---Guest Editors' Introduction. IEEE Computer, 32(8):34-37, 1999.

[4863] Ramkumar, G. D and Ranka, S. and Tsur, S. Weighted Association Rules: Model and Algorithm. http://www.cs.ucla.edu/czdemo/tsur/, 1997.

[4864] Ramoni, M. and Sebastiani, P. Robust Bayes classifiers. Artificial Intelligence, 125:209--226, 2001.

[4865] van Rijsbergen, C. J. Information Retrieval. Butterworth-Heinemann, Newton, MA, 1978.

[4866] Roiger, R. and Geatz, M. Data Mining: A Tutorial Based Primer. Addison-Wesley, 2002.

[4867] Safavian, S. R. and Landgrebe, D. A Survey of Decision Tree Classifier Methodology. IEEE Trans. Systems, Man and Cybernetics, 22:660--674, 1998.

[4868] Sarawagi, S. and Thomas, S. and Agrawal, R. Integrating Mining with Relational Database Systems: Alternatives and Implications. SIGMOD98, pages 343--354, Seattle, WA, 1998.

[4869] Satou, K. and Shibayama, G. and Ono, T. and Yamamura, Y. and Furuichi,E. and Kuhara, S. and Takagi, T. Finding Association Rules on Heterogeneous Genome Data. Proc. of the Pacific Symp. on Biocomputing, pages 397--408, Hawaii, 1997.

[4870] Savasere, A. and Omiecinski, E. and Navathe, S. An efficient algorithm for mining association rules in large databases. Proc. of the 21st Int. Conf. on Very Large Databases (VLDB`95), pages 432-444, Zurich, Switzerland, 1995.

[4871] A. Savasere and E. Omiecinski and S. Navathe. Mining for Strong Negative Associations in a Large Database of Customer Transactions. ICDE98, pages 494--502, Orlando, Florida, 1998.

[4872] Schaffer, C. Overfitting avoidence as bias. Machine Learning, 10:153--178, 1993.

[4873] Schapire, R. E. The Boosting Approach to Machine Learning: An Overview. MSRI Workshop on Nonlinear Estimation and Classification, 2002.

[4874] Schölkopf, B. and Smola, A. J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, 2001.

[4875] Schuermann, J. and Doster, W. A decision-theoretic approach in hierarchical classifier design. Pattern Recognition, 17:359--369, 1984.

[4876] Advances in Distributed and Parallel Knowledge Discovery. AAAI Press, 2002.

[4877] Advances in Knowledge Discovery and Data Mining.. AAAI/MIT Press, 1996.

[4878] Rakesh Agrawal and Johannes Gehrke and Dimitrios Gunopulos and Prabhakar Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. In Laura M. Haas and Ashutosh Tiwary, editors, SIGMOD98, pages 94--105, Seattle, Washington, 1998. ACM Press.

[4879] Ming-Syan Chen and Jiawei Han and Philip S. Yu. Data Mining: An Overview from a Database Perspective. IEEE Transactions on Knowledge abd Data Engineering, 8(6):866-883, 1996.

[4880] Seno, M. and Karypis, G. LPMiner: An Algorithm for Finding Frequent Itemsets Using Length-Decreasing Support Constraint. ICDM01, pages 505--512, San Jose, CA, 2001.

[4881] Seno, M. and Karypis, G. SLPMiner: An Algorithm for Finding Frequent Sequential Patterns Using Length-Decreasing Support Constraint. ICDM02, pages 418--425, Maebashi City, Japan, 2002.

[4882] Shafer, J. C. and Agrawal, R. and Mehta, M. SPRINT: A Scalable Parallel Classifier for Data Mining. VLDB96, pages 544--555, Bombay, India, 1996.

[4883] Shintani, T. and Kitsuregawa, M. Hash based parallel algorithms for mining association rules. Proc of the 4th Intl. Conf. on Parallel and Distributed Info. Systems, pages 19--30, Miami Beach, FL, 1996.

[4884] Silberschatz, A. and Tuzhilin, A. What makes patterns interesting in knowledge discovery systems. IEEE Trans. on Knowledge and Data Engineering, 8(6):970--974, 1996.

[4885] Silverstein, C. and Brin, S. and Motwani, R. Beyond market baskets: Generalizing association rules to dependence rules. Data Mining and Knowledge Discovery, 2(1):39--68, 1998.

[4886] Simpson, E.-H. The Interpretation of Interaction in Contingency Tables. Journal of the Royal Statistical Society, B(13):238--241, 1951.

[4887] Singh, L. and Chen, B. and Haight, R. and Scheuermann, P. An Algorithm for Constrained Association Rule Mining in Semi-structured Data. PAKDD99, pages 148--158, Beijing, China, 1999.

[4888] Smyth, P. and Goodman, R. M. An Information Theoretic Approach to Rule Induction from Databases. IEEE Trans. on Knowledge and Data Engineering, 4(4):301--316, 1992.

[4889] Padhraic Smyth. Breaking out of the Black-Box: Research Challenges in Data Mining. DMKD01, 2001.

[4890] Padhraic Smyth and Daryl Pregibon and Christos Faloutsos. Data-driven evolution of data mining algorithms. Communications of the ACM, 45(8):33-37, 2002.

[4891] Srikant, R. and Agrawal, R. Mining Generalized Association Rules. VLDB95, pages 407--419, Zurich, Switzerland, 1995.

[4892] Srikant, R. and Agrawal, R. Mining Quantitative Association Rules in Large Relational Tables. SIGMOD96, pages 1--12, Montreal, Canada, 1996.

[4893] Srikant, R. and Agrawal, R. Mining Sequential Patterns: Generalizations and Performance Improvements. Proc. of the 5th Intl Conf. on Extending Database Technology (EDBT'96), pages 18--32, Avignon, France, 1996.

[4894] Srikant, R. and Vu, Q. and Agrawal, R. Mining Association Rules with Item Constraints. KDD97, pages 67--73, Newport Beach, CA, 1997.

[4895] Steinbach, M. and Tan, P. N. and Kumar, V. Support Envelopes: A Technique for Exploring the Structure of Association Patterns. KDD04, pages 296--305, Seattle, WA, 2004.

[4896] Steinbach, M. and Tan, P. N. and Xiong, H. and Kumar, V. Extending the Notion of Support. KDD04, pages 689--694, Seattle, WA, 2004.

[4897] Suzuki, E. Autonomous Discovery of Reliable Exception Rules. KDD97, pages 259--262, Newport Beach, CA, 1997.

[4898] Tan, P. N. and Kumar, V. Mining Association Patterns in Web Usage Data. Proc. of the Intl. Conf. on Advances in Infrastructure for e-Business, e-Education, e-Science and e-Medicine on the Internet, L'Aquila, Italy, 2002.

[4899] Tan, P. N. and Kumar, V. and Srivastava, J. Indirect Association: Mining Higher Order Dependencies in Data. PKDD00, pages 632--637, Lyon, France, 2000.

[4900] Tan, P. N. and Kumar, V. and Srivastava, J. Selecting the Right Interestingness Measure for Association Patterns. KDD02, pages 32--41, Edmonton, Canada, 2002.

[4901] Tan, P. N. and Steinbach, M. and Kumar, V. and Klooster, S. and Potter, C. and Torregrosa, A. Finding Spatio-Temporal Patterns in Earth Science Data. KDD 2001 Workshop on Temporal Data Mining, San Francisco, CA, 2001.

[4902] Tax, D. M. J. and Duin, R. P. W. Using Two-Class Classifiers for Multiclass Classification. Proc. of the 16th Intl. Conf. on Pattern Recognition (ICPR 2002), pages 124--127, Quebec, Canada, 2002.

[4903] Teng, W. G. and Hsieh, M. J. and Chen, M.-S. On the Mining of Substitution Rules for Statistically Dependent Items. ICDM02, pages 442--449, Maebashi City, Japan, 2002.

[4904] Toivonen, H and Klemettinen, M. and Ronkainen, P. and Hatonen, K. and Mannila, H. Pruning and Grouping Discovered Association Rules. ECML-95 Workshop on Statistics, Machine Learning and Knowledge Discovery in Databases, pages 47 -- 52, Heraklion, Greece, 1995.

[4905] Toivonen, H. Sampling Large Databases for Association Rules. VLDB96, pages 134--145, Bombay, India, 1996.

[4906] Tsur, S. and Ullman, J. and Abiteboul, S. and Clifton, C. and Motwani, R. and Nestorov, S. and Rosenthal, A. Query Flocks: A Generalization of Association Rule Mining. SIGMOD98, pages 1--12, Seattle, WA, 1998.

[4907] Tung, Anthony and Lu, H. J. and Han, Jiawei and Feng, Ling. Breaking the Barrier of Transactions: Mining Inter-Transaction Association Rules. KDD99, pages 297--301, San Diego, CA, 1999.

[4908] Utgoff, P. E. and Brodley, C. E. An incremental method for finding multivariate splits for decision trees. ICML90, pages 58--65, Austin, TX, 1990.

[4909] Vapnik, V. Statistical Learning Theory. John Wiley & Sons, New York, 1998.

[4910] Vapnik, V. The Nature of Statistical Learning Theory. Springer Verlag, New York, 1995.

[4911] Wang, H. and Zaniolo, C. CMP: A Fast Decision Tree Classifier Using Multivariate Predictions. ICDE00, pages 449--460, San Diego, CA, 2000.

[4912] Wang, K. and He, Y. and Han, J. Mining Frequent Itemsets Using Support Constraints. VLDB00, pages 43--52, Cairo, Egypt, 2000.

[4913] Wang, K. and Tay, S. H. and Liu, B. Interestingness-Based Interval Merger for Numeric Association Rules. KDD98, pages 121--128, New York, NY, 1998.

[4914] Wang, Q. R. and Suen, C. Y. Large tree classifier with heuristic search and global training. IEEE Trans. on Pattern Analysis and Machine Intelligence, 9(1):91--102, 1987.

[4915] Webb, A. R. Statistical Pattern Recognition. John Wiley & Sons, 2nd edition, 2002.

[4916] Webb, G. I. Discovering associations with numeric variables. KDD01, pages 383--388, San Francisco, CA, 2001.

[4917] Webb, G. I. Preliminary investigations into statistically valid exploratory rule discovery. Proc. of the Australasian Data Mining Workshop (AusDM03), Canberra, Australia, 2003.

[4918] Weiss, G. M. Mining with Rarity: A Unifying Framework. SIGKDD Explorations, 6(1):7--19, 2004.

[4919] Witten, I. H. and Frank, E. Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, 1999.

[4920] Wu, X. and Zhang, C. and Zhang, S. Mining Both Positive and Negative Association Rules. ACM Trans. on Information Systems, 22(3):381--405, 2004.

[4921] Xindong Wu and Philip S. Yu and Gregory Piatetsky-Shapiro. Data Mining: How Research Meets Practical Development?. Knowledge and Information Systems, 5(2):248-261, 2003.

[4922] Xiong, H. and He, X. and Ding, C. and Zhang, Y. and Kumar, V. and Holbrook, S. R. Identification of Functional Modules in Protein Complexes via Hyperclique Pattern Discovery. Proc. of the Pacific Symposium on Biocomputing, (PSB 2005), Maui, 2005.

[4923] Xiong, H. and Shekhar, S. and Tan, P. N. and Kumar, V. Exploiting a Support-based Upper Bound of Pearson's Correlation Coefficient for Efficiently Identifying Strongly Correlated Pairs. KDD04, pages 334-343, Seattle, WA, 2004.

[4924] Xiong, H. and Steinbach, M. and Tan, P. N. and Kumar, V. HICAP: Hierarchial Clustering with Pattern Preservation. SDM04, pages 279--290, Orlando, FL, 2004.

[4925] Xiong, H. and Tan, P. N. and Kumar, V. Mining Strong Affinity Association Patterns in Data Sets with Skewed Support Distribution. ICDM03, pages 387--394, Melbourne, FL, 2003.

[4926] Yan, X. and Han, J. gSpan: Graph-based Substructure Pattern Mining. ICDM02, pages 721--724, Maebashi City, Japan, 2002.

[4927] Yang, C. and Fayyad, U. M. and Bradley, P. S. Efficient discovery of error-tolerant frequent itemsets in high dimensions. KDD01, pages 194--203, San Francisco, CA, 2001.

[4928] Zadrozny, B. and Langford, J. C. and Abe, N. Cost-Sensitive Learning by Cost-Proportionate Example Weighting. ICDM03, pages 435--442, Melbourne, FL, 2003.

[4929] Zaki, M. J. Efficiently mining frequent trees in a forest. KDD02, pages 71--80, Edmonton, Canada, 2002.

[4930] Zaki, M. J. Generating Non-Redundant Association Rules. KDD00, pages 34--43, Boston, MA, 2000.

[4931] Zaki, M. J. Parallel and Distributed Association Mining: A Survey. IEEE Concurrency, special issue on Parallel Mechanisms for Data Mining, 7(4):14--25, 1999.

[4932] Zaki, M. J. and Orihara, M. Theoretical foundations of association rules. DMKD98, Seattle, WA, 1998.

[4933] Zaki, M. J. and Parthasarathy, S. and Ogihara, M. and Li, W. New Algorithms for Fast Discovery of Association Rules. KDD97, pages 283--286, Newport Beach, CA, 1997.

[4934] Zhang, H. and Padmanabhan, B. and Tuzhilin, A. On the Discovery of Significant Statistical Quantitative Rules. KDD04, pages 374--383, Seattle, WA, 2004.

[4935] Zhang, Z. and Lu, Y. and Zhang, B. An Effective Partioning-Combining Algorithm for Discovering Quantitative Association Rules. PAKDD97, Singapore, 1997.

[4936] Data Mining for Scientific and Engineering Applications. Kluwer Academic Publishers, 2001.

[4937] "C. Clifton and M. Kantarcioglu and J. Vaidya. Defining privacy for data mining. National Science Foundation Workshop on Next Generation Data Mining, pages 126--133, Baltimore, MD, 2002.

[4938] Large-Scale Parallel Data Mining. Springer, 2002.

[4939] Rakesh Agrawal and Ramakrishnan Srikant. Privacy-preserving data mining. SIGMOD00, pages 439--450, Dallas, Texas, 2000. ACM Press.

[4940] Mark S. Aldenderfer and Roger K. Blashfield. Cluster Analysis. Sage Publications, Los Angeles, 1985.

[4941] Michael R. Anderberg. Cluster Analysis for Applications. Academic Press, New York, 1973.

[4510] Andrews, R. and Diederich, J. and Tickle, A. A Survey and Critique of Techniques For Extracting Rules From Trained Artificial Neural Networks. Knowledge Based Systems, 8(6):373--389, 1995.

[4942] Phipps Arabie and Lawrence Hubert and G. De Soete. An overview of combinatorial data analysis. In P. Arabie and L. Hubert and G. De Soete, editors, Clustering and Classification, pages 188--217. World Scientific, Singapore, 1996.

[4943] G. Ball and D. Hall. A Clustering Technique for Summarizing Multivariate Data. Behavior Science, 12:153--155, 1967.

[4944] A. Banerjee and S. Merugu and I. S. Dhillon and J. Ghosh. Clustering with Bregman Divergences. In Michael W. Berry and Umeshwar Dayal and Chandrika Kamath and David Skillicorn, editors, SDM04, pages 234--245, Lake Buena Vista, FL, 2004.

[4945] Hans Hermann Bock and Edwin Diday. Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data (Studies in Classification, Data Analysis, and Knowledge Organization). Springer-Verlag Telos, 2000.

[4946] Ingwer Borg and Patrick Groenen. Modern Multidimensional Scaling---Theory and Applications. Springer-Verlag, 1997.

[4947] William G. Cochran. Sampling Techniques. John Wiley & Sons, 3rd edition, 1977.

[4948] James W. Demmel. Applied Numerical Linear Algebra. Society for Industrial & Applied Mathematics, 1997.

[4949] Pedro Domingos and Geoff Hulten. Mining high-speed data streams. KDD00, pages 71--80, Boston, Massachusetts, 2000. ACM Press.

[4950] Gaohua Gu, Feifang Hu and Huan Liu. Sampling and Its Application in Data Mining: A Survey. Technical report, TRA6/00, National University of Singapore, Singapore, 2000.

[4951] C. Giannella and J. Han and J. Pei and X. Yan and P. S. Yu. Mining Frequent Patterns in Data Streams at Multiple Time Granularities. In H. Kargupta and A. Joshi and K. Sivakumar and Y. Yesha, editors, Next Generation Data Mining, pages 191-212. AAAI/MIT, 2003.

[4952] D. J. Hand. Statistics and the Theory of Measurement. Journal of the Royal Statistical Society: Series A (Statistics in Society), 159(3):445-492, 1996.

[4953] Hillol Kargupta and Souptik Datta and Qi Wang and Krishnamoorthy Sivakumar. On the Privacy Preserving Properties of Random Data Perturbation Techniques. ICDM03, pages 99-106, Melbourne, Florida, 2003. IEEE Computer Society.

[4954] Daniel Kifer and Shai Ben-David and Johannes Gehrke. Detecting Change in Data Streams. VLDB04, pages 180-191, Toronto, Canada, 2004. Morgan Kaufmann.

[4955] David Krantz and R. Duncan Luce and Patrick Suppes and Amos Tversky. Foundations of Measurements: Volume 1: Additive and polynomial representations. Academic Press, New York, 1971.

[4956] Martin H. C. Law and Nan Zhang and Anil K. Jain. Nonlinear Manifold Learning for Data Streams.In Michael W. Berry and Umeshwar Dayal and Chandrika Kamath and David Skillicorn, editors, SDM04, Lake Buena Vista, Florida, 2004. SIAM.

[4957] B. W. Lindgren. Statistical Theory. CRC Press, 1993.

[4958] R. Duncan Luce and David Krantz and Patrick Suppes and Amos Tversky. Foundations of Measurements: Volume 3: Representation, Axiomatization, and Invariance. Academic Press, New York, 1990.

[4959] F. Olken and D. Rotem. Random Sampling from Databases---A Survey. Statistics & Computing, 5(1):25--42, 1995.

[4960] Jason Osborne. Notes on the Use of Data Transformations. Practical Assessment, Research & Evaluation, 28(6), 2002.

[4961] Christopher R. Palmer and Christos Faloutsos. Density biased sampling: An improved method for data mining and clustering. ACM SIGMOD Record, 29(2):82--92, 2000.

[4962] Spiros Papadimitriou and Anthony Brockwell and Christos Faloutsos. Adaptive, unsupervised stream mining. VLDB Journal, 13(3):222-239, 2004.

[4963] Foster J. Provost and David Jensen and Tim Oates. Efficient Progressive Sampling. KDD99, pages 23--32, 1999.

[4964] Stanley Smith Stevens. Measurement. In Gary Michael Maranell, editors, Scaling: A Sourcebook for Behavioral Scientists, pages 22--41. Aldine Publishing Co., Chicago, 1974.

[4965] Stanley Smith Stevens. On the Theory of Scales of Measurement. Science, 103(2684):677--680, 1946.

[4966] Patrick Suppes and David Krantz and R. Duncan Luce and Amos Tversky. Foundations of Measurements: Volume 2: Geometrical, Threshold, and Probabilistic Representations. Academic Press, New York, 1989.

[4967] Hannu Toivonen. Sampling Large Databases for Association Rules. In T. M. Vijayaraman and Alejandro P. Buchmann and C. Mohan and Nandlal L. Sarda, editors, VLDB96, pages 134--145, 1996. Morgan Kaufman.

[4968] John W. Tukey. On the Comparative Anatomy of Transformations. Annals of Mathematical Statistics, 28(3):602--632, 1957.

[4969] Vassilios S. Verykios and Elisa Bertino and Igor Nai Fovino and Loredana Parasiliti Provenza and Yucel Saygin and Yannis Theodoridis. State-of-the-art in privacy preserving data mining. SIGMOD Record, 33(1):50--57, 2004.

[4970] Richard Y. Wang and Mostapha Ziad and Yang W. Lee and Y. Richard Wang. Data Quality of The Kluwer International Series on Advances in Database Systems, Volume 23. Kluwer Academic Publishers, 2001.

[4971] Mohammed Javeed Zaki and Srinivasan Parthasarathy and Wei Li and Mitsunori Ogihara. Evaluation of Sampling for Data Mining of Association Rules. Technical report, TR617, Rensselaer Polytechnic Institute, 1996.

[4972] Feature Extraction, Construction and Selection: A Data Mining Perspective of Kluwer International Series in Engineering and Computer Science, 453. Kluwer Academic Publishers, 1998.

[4973] MIT Total Data Quality Management Program. web.mit.edu/tdqm/www/index.shtml, 2003.

[4974] Mihael Ankerst and Markus M. Breunig and Hans-Peter Kriegel and Jörg Sander. OPTICS: Ordering Points To Identify the Clustering Structure. In Alex Delis and Christos Faloutsos and Shahram Ghandeharizadeh, editors, SIGMOD99, pages 49--60, Philadelphia, Pennsylvania, 1999. ACM Press.

[4975] Daniel Barbará. Requirements for clustering data streams. SIGKDD Explorations Newsletter, 3(2):23--27, 2002.

[4976] Pavel Berkhin. Survey Of Clustering Data Mining Techniques. Technical report, Accrue Software, San Jose, CA, 2002.

[4977] J. Bilmes. A Gentle Tutorial on the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models. Technical report, ICSI-TR-97-021, University of California at Berkeley, 1997.

[4978] C. M. Bishop and M. Svensen and C. K. I. Williams. GTM: A principled alternative to the self-organizing map. In C. von der Malsburg and W. von Seelen and J. C. Vorbruggen and B. Sendhoff, editors, Artificial Neural Networks---ICANN96. Intl. Conf, Proc., pages 165-170. Springer-Verlag, Berlin, Germany, 1996.

[4979] Avrim Blum and Pat Langley. Selection of Relevant Features and Examples in Machine Learning. Artificial Intelligence, 97(1--2):245--271, 1997.

[4980] Daniel Boley. Principal Direction Divisive Partitioning. Data Mining and Knowledge Discovery, 2(4):325-344, 1998.

[4981] Paul S. Bradley and Usama M. Fayyad. Refining Initial Points for K-Means Clustering. In Jude W. Shavlik, editors, ICML98, pages 91--99, Madison, WI, 1998. Morgan Kaufmann Publishers Inc.

[4982] Paul S. Bradley and Usama M. Fayyad and Cory Reina. Scaling Clustering Algorithms to Large Databases. In Rakesh Agrawal and Paul Stolorz and Gregory Piatetsky-Shapiro, editors, KDD98, pages 9--15, New York City, 1998. AAAI Press.

[4983] Peter Cheeseman and James Kelly and Matthew Self and John Stutz and Will Taylor and Don Freeman. AutoClass: a Bayesian classification system. Readings in knowledge acquisition and learning: automating the construction and improvement of expert systems, pages 431--441. Morgan Kaufmann Publishers Inc., 1993.

[4984] James Dougherty and Ron Kohavi and Mehran Sahami. Supervised and Unsupervised Discretization of Continuous Features. ICML95, pages 194--202, 1995.

[4985] Duda, Robert O. and Hart, Peter E. and Stork, David G. Pattern Classification. John Wiley & Sons, Inc., New York, Second edition, 2001.

[4986] Tapio Elomaa and Juho Rousu. General and Efficient Multisplitting of Numerical Attributes. Machine Learning, 36(3):201--244, 1999.

[4987] Levent Ertöz and Michael Steinbach and Vipin Kumar. A New Shared Nearest Neighbor Clustering Algorithm and its Applications. Workshop on Clustering High Dimensional Data and its Applications, Proc. of Text Mine'01, First SIAM Intl. Conf. on Data Mining, Chicago, IL, USA, 2001.

[4988] Levent Ertöz and Michael Steinbach and Vipin Kumar. Finding Clusters of Different Sizes, Shapes, and Densities in Noisy, High Dimensional Data. SDM03, San Francisco, 2003. SIAM.

[4989] Martin Ester and Hans-Peter Kriegel and Jörg Sander and Michael Wimmer and Xiaowei Xu. Incremental Clustering for Mining in a Data Warehousing Environment. In Ashish Gupta and Oded Shmueli and Jennifer Widom, editors, VLDB98, pages 323--333, New York City, 1998. Morgan Kaufmann.

[4990] Martin Ester and Hans-Peter Kriegel and Jorg Sander and Xiaowei Xu. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Evangelos Simoudi and Jiawei Han and Usama M. Fayyad, editors, KDD96, pages 226--231, Portland, Oregon, 1996. AAAI Press.

[4991] Brian S. Everitt and Sabine Landau and Morven Leese. Cluster Analysis. Arnold Publishers, London, Fourth edition, 2001.

[4992] U. M. Fayyad and K. B. Irani. Multi-interval discretization of continuousvalued attributes for classification learning. Proc. 13th Int. Joint Conf. on Artificial Intelligence, pages 1022--1027, 1993. Morgan Kaufman.

[4993] Douglas Fisher. Iterative Optimization and Simplification of Hierarchical Clusterings. Journal of Artificial Intelligence Research, 4:147--179, 1996.

[4994] Douglas Fisher and Pat Langley. Conceptual clustering and its relation to numerical taxonomy. Artificial Intelligence and Statistics, :77--116, 1986.

[4995] Chris Fraley and Adrian E. Raftery. How Many Clusters? Which Clustering Method? Answers Via Model-Based Cluster Analysis. The Computer Journal, 41(8):578--588, 1998.

[4996] Venkatesh Ganti and Johannes Gehrke and Raghu Ramakrishnan. CACTUS--Clustering Categorical Data Using Summaries. KDD99, pages 73--83, 1999. ACM Press.

[4997] Allen Gersho and Robert M. Gray. Vector Quantization and Signal Compression, volume 159 of Kluwer International Series in Engineering and Computer Science. Kluwer Academic Publishers, 1992.

[4998] Joydeep Ghosh. Scalable Clustering Methods for Data Mining. In Nong Ye, editors, Handbook of Data Mining, pages 247--277. Lawrence Ealbaum Assoc, 2003.

[4999] David Gibson and Jon M. Kleinberg and Prabhakar Raghavan. Clustering Categorical Data: An Approach Based on Dynamical Systems. VLDB Journal, 8(3--4):222--236, 2000.

[5000] K. C. Gowda and G. Krishna. Agglomerative Clustering Using the Concept of Mutual Nearest Neighborhood. Pattern Recognition, 10(2):105--112, 1978.

[5001] Sudipto Guha and Adam Meyerson and Nina Mishra and Rajeev Motwani and Liadan O'Callaghan. Clustering Data Streams: Theory and Practice. IEEE Transactions on Knowledge and Data Engineering, 15(3):515--528, 2003.

[5002] Sudipto Guha and Rajeev Rastogi and Kyuseok Shim. CURE: An Efficient Clustering Algorithm for Large Databases. In Laura M. Haas and Ashutosh Tiwary, editors, SIGMOD98, pages 73--84, 1998. ACM Press.

[5003] Sudipto Guha and Rajeev Rastogi and Kyuseok Shim. ROCK: A Robust Clustering Algorithm for Categorical Attributes. In Masaru Kitsuregawa and Leszek Maciaszek and Mike Papazoglou and Calton Pu, editors, ICDE99, pages 512--521, 1999. IEEE Computer Society.

[5004] Maria Halkidi and Yannis Batistakis and Michalis Vazirgiannis. Cluster validity methods: part I. SIGMOD Record (ACM Special Interest Group on Management of Data), 31(2):40--45, 2002.

[5005] Maria Halkidi and Yannis Batistakis and Michalis Vazirgiannis. Clustering validity checking methods: part II. SIGMOD Record (ACM Special Interest Group on Management of Data), 31(3):19--27, 2002.

[5006] Greg Hamerly and Charles Elkan. Alternatives to the k-means algorithm that find better clusterings. CIKM02, pages 600--607, McLean, Virginia, 2002. ACM Press.

[5007] Jiawei Han and Micheline Kamber and Anthony Tung. Spatial Clustering Methods in Data Mining: A review. In Harvey J. Miller and Jiawei Han, editors, Geographic Data Mining and Knowledge Discovery, pages 188--217. Taylor and Francis, London, 2001.

[5008] John Hartigan. Clustering Algorithms. Wiley, New York, 1975.

[5009] Alexander Hinneburg and Daniel A. Keim. Optimal Grid-Clustering: Towards Breaking the Curse of Dimensionality in High-Dimensional Clustering. In M. P. Atkinson and M. E. Orlowska and P. Valduriez and S. B. Zdonik and M. L. Brodie, editors, VLDB99, pages 506--517, Edinburgh, Scotland, UK, 1999. Morgan Kaufmann.

[5010] Alexander Hinneburg and Daniel. A. Keim. An Efficient Approach to Clustering in Large Multimedia Databases with Noise. In Rakesh Agrawal and Paul Stolorz, editors, KDD98, pages 58--65, New York City, 1998. AAAI Press.

[5011] F. Hussain and H. Liu and C. L. Tan and M. Dash. TRC6/99: Discretization: an enabling technique. Technical report, National University of Singapore, Singapore, 1999.

[5012] Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data of Prentice Hall Advanced Reference Series. Prentice Hall, 1988. Book available online at http://www.cse.msu.edu/ : jain/Clustering_Jain_Dubes.pdf.

[5013] Anil K. Jain and M. Narasimha Murty and Patrick J. Flynn. Data clustering: A review. ACM Computing Surveys, 31(3):264--323, 1999.

[5014] Nicolas Jardine and Robin Sibson. Mathematical Taxonomy. Wiley, New York, 1971.

[5015] R. A. Jarvis and E. A. Patrick. Clustering Using a Similarity Measure Based on Shared Nearest Neighbors. IEEE Transactions on Computers, C-22(11):1025-1034, 1973.

[5016] I. T. Jolliffe. Principal Component Analysis. Springer Verlag, 2nd edition, 2002.

[5017] Istvan Jonyer and Diane J. Cook and Lawrence B. Holder. Graph-based hierarchical conceptual clustering. Journal of Machine Learning Research, 2:19--43, 2002.

[5018] Karin Kailing and Hans-Peter Kriegel and Peer Kröger. Density-Connected Subspace Clustering for High-Dimensional Data. In Michael W. Berry and Umeshwar Dayal and Chandrika Kamath and David B. Skillicorn, editors, SDM04, pages 428--439, Lake Buena Vista, Florida, 2004. SIAM.

[5019] George Karypis and Eui-Hong Han and Vipin Kumar. CHAMELEON: A Hierarchical Clustering Algorithm Using Dynamic Modeling. IEEE Computer, 32(8):68--75, 1999.

[5020] George Karypis and Eui-Hong Han and Vipin Kumar. Multilevel Refinement for Hierarchical Clustering. Technical report, TR 99-020, University of Minnesota, Minneapolis, MN, 1999.

[5021] George Karypis and Vipin Kumar. Multilevel k-way Partitioning Scheme for Irregular Graphs. Journal of Parallel and Distributed Computing, 48(1):96-129, 1998.

[5022] Leonard Kaufman and Peter J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster Analysis of Wiley Series in Probability and Statistics. John Wiley and Sons, New York, 1990.

[5023] Jon M. Kleinberg. An Impossibility Theorem for Clustering. Proc. of the 16th Annual Conf. on Neural Information Processing Systems, 2002.

[5024] Ron Kohavi and George H. John. Wrappers for Feature Subset Selection. Artificial Intelligence, 97(1--2):273--324, 1997.

[5025] Teuvo Kohonen and Thomas S. Huang and Manfred R. Schroeder. Self-Organizing Maps. Springer-Verlag, 2000.

[5026] Joseph B. Kruskal and Eric M. Uslaner. Multidimensional Scaling. Sage Publications, 1978.

[5027] Bjornar Larsen and Chinatsu Aone. Fast and Effective Text Mining Using Linear-Time Document Clustering. KDD99, pages 16--22, San Diego, California, 1999. ACM Press.

[5028] H. Liu and H. Motoda and L. Yu. Feature Extraction, Selection, and Construction. In Nong Ye, editors, The Handbook of Data Mining, pages 22--41. Lawrence Erlbaum Associates, Inc., Mahwah, NJ, 2003.

[5029] Huan Liu and Hiroshi Motoda. Feature Selection for Knowledge Discovery and Data Mining of Kluwer International Series in Engineering and Computer Science, 454. Kluwer Academic Publishers, 1998.

[5030] J. MacQueen. Some methods for classification and analysis of multivariate observations. In Le Cam, L. M. and Neyman, J., editors, Proc. of the 5th Berkeley Symp. on Mathematical Statistics and Probability, pages 281--297, 1967. University of California Press.

[5031] Michalski, R. S. and Stepp, R. E. Automated Construction of Classifications: Conceptual Clustering Versus Numerical Taxonomy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 5(4):396--409, 1983.

[5032] Glen W. Milligan. Clustering Validation: Results and Implications for Applied Analyses. In P. Arabie and L. Hubert and G. De Soete, editors, Clustering and Classification, pages 345--375. World Scientific, Singapore, 1996.

[5033] Boris Mirkin. Mathematical Classification and Clustering, volume 11 of Nonconvex Optimization and Its Applications. Kluwer Academic Publishers, 1996.

[5034] Nina Mishra and Dana Ron and Ram Swaminathan. A New Conceptual Clustering Framework. Machine Learning Journal, 56(1--3):115--151, 2004.

[5035] Luis Carlos Molina and Lluis Belanche and Angela Nebot. Feature Selection Algorithms: A Survey and Experimental Evaluation. ICDM02, 2002.

[5036] Fionn Murtagh. Clustering massive data sets. In J. Abello and P. M. Pardalos and M. G. C. Reisende, editors, Handbook of Massive Data Sets. Kluwer, 2000.

[5037] Fionn Murtagh. Multidimensional Clustering Algorithms. Physica-Verlag, Heidelberg and Vienna, 1985.

[5038] Harsha Nagesh and Sanjay Goil and Alok Choudhary. Parallel Algorithms for Clustering High-Dimensional Large-Scale Datasets. In Robert L. Grossman and Chandrika Kamath and Philip Kegelmeyer and Vipin Kumar and Raju Namburu, editors, Data Mining for Scientific and Engineering Applications, pages 335--356. Kluwer Academic Publishers, Dordrecht, Netherlands, 2001.

[5039] Raymond T. Ng and Jiawei Han. CLARANS: A Method for Clustering Objects for Spatial Data Mining. IEEE Transactions on Knowledge and Data Engineering, 14(5):1003--1016, 2002.

[5040] Dan Pelleg and Andrew W. Moore. X -means: Extending K -means with Efficient Estimation of the Number of Clusters. ICML00, pages 727--734, 2000. Morgan Kaufmann, San Francisco, CA.

[5041] Markus Peters and Mohammed J. Zaki. CLICKS: Clustering Categorical Data using K-partite Maximal Cliques. ICDE05, Tokyo, Japan, 2005.

[5042] Thomas C. Redman. Data Quality: The Field Guide. Digital Press, 2001.

[5043] Charles Romesburg. Cluster Analysis for Researchers. Life Time Learning, Belmont, CA, 1984.

[5044] J. Sander and M. Ester and H.-P. Kriegel and X. Xu. Density-Based Clustering in Spatial Databases: The Algorithm GDBSCAN and its Applications. Data Mining and Knowledge Discovery, 2(2):169--194, 1998.

[5045] Sergio M. Savaresi and Daniel Boley. A comparative analysis on the bisecting K-means and the PDDP clustering algorithms. Intelligent Data Analysis, 8(4):345-362, 2004.

[5046] Erich Schikuta and Martin Erhart. The BANG-Clustering System: Grid-Based Data Analysis. In Xiaohui Liu and Paul R. Cohen and Michael R. Berthold, editors, Advances in Intelligent Data Analysis, Reasoning about Data, Second Intl. Symposium, IDA-97, London in Lecture Notes in Computer Science, pages 513--524, 1997. Springer.

[5047] Gholamhosein Sheikholeslami and Surojit Chatterjee and Aidong Zhang. Wavecluster: A multi-resolution clustering approach for very large spatial databases. In Ashish Gupta and Oded Shmueli and Jennifer Widom, editors, VLDB98, pages 428--439, New York City, 1998. Morgan Kaufmann.

[5048] Sneath, Peter H. A. and Robert R. Sokal. Numerical Taxonomy. Freeman, San Francisco, 1971.

[5049] Helmuth Späth. Cluster Analysis Algorithms for Data Reduction and Classification of Objects, volume 4 of Computers and Their Application. Ellis Horwood Publishers, Chichester, 1980. ISBN 0-85312-141-9.

[5050] Ramakrishnan Srikant and Rakesh Agrawal. Mining Quantitative Association Rules in Large Relational Tables. In H. V. Jagadish and Inderpal Singh Mumick, editors, SIGMOD96, pages 1--12, Montreal, Quebec, Canada, 1996.

[5051] Michael Steinbach and George Karypis and Vipin Kumar. A Comparison of Document Clustering Techniques. Proc. of KDD Workshop on Text Mining, Proc. of the 6th Intl. Conf. on Knowledge Discovery and Data Mining, Boston, MA, 2000.

[5052] Robert E. Stepp and Ryszard S. Michalski. Conceptual clustering of structured objects: A goal-oriented approach. Artificial Intelligence, 28(1):43--69, 1986.

[5053] Alexander Strehl and Joydeep Ghosh. A Scalable Approach to Balanced, High-dimensional Clustering of Market-Baskets. Proc. of the 7th Intl. Conf. on High Performance Computing (HiPC 2000) in Lecture Notes in Computer Science, pages 525--536, Bangalore, India, 2000. Springer.

[5054] Charles T. Zahn. Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters. IEEE Transactions on Computers, C-20(1):68-86, 1971.

[5055] Tian Zhang and Raghu Ramakrishnan and Miron Livny. BIRCH: an efficient data clustering method for very large databases. In H. V. Jagadish and Inderpal Singh Mumick, editors, SIGMOD96, pages 103--114, Montreal, Quebec, Canada, 1996. ACM Press.

[5056] CLUTO 2.1.1: Software for Clustering High-Dimensional Datasets. /www.cs.umn.edu/ : karypis, 2003.

[4629] Agrawal, R. and Imielinski, T. and Swami, A. Database mining: A performance perspective. IEEE Transactions on Knowledge and Data Engineering, 5:914--925, 1993.

[5057] P. S. Bradley and U. M. Fayyad and C. Reina. Scaling EM (Expectation Maximization) Clustering to Large Databases. Technical report, MSR-TR-98-35, Microsoft Research, 1999.

[5058] D. A. Burn. Designing Effective Statistical Graphs. In C. R. Rao, editors, Handbook of Statistics 9. Elsevier/North-Holland, Amsterdam, The Netherlands, 1993.

[5059] Inderjit S. Dhillon and Yuqiang Guan and J. Kogan. Iterative Clustering of High Dimensional Text Data Augmented by Local Search. ICDM02, pages 131-138, 2002. IEEE Computer Society.

[5060] Inderjit S. Dhillon and Dharmendra S. Modha. Concept Decompositions for Large Sparse Text Data Using Clustering. Machine Learning, 42(1/2):143-175, 2001.

[5061] Michael Friendly. Gallery of Data Visualization. http://www.math.yorku.ca/SCS/Gallery/, 2005.

[5062] Eui-Hong Han and George Karypis and Vipin Kumar and Bamshad Mobasher. Hypergraph Based Clustering in High-Dimensional Data Sets: A Summary of Results. IEEE Data Eng. Bulletin, 21(1):15-22, 1998.

[5063] Konstantinos Kalpakis and Dhiral Gada and Vasundhara Puttagunta. Distance Measures for Effective Clustering of ARIMA Time-Series. ICDM01, pages 273-280, 2001. IEEE Computer Society.

[5064] Eamonn J. Keogh and Michael J. Pazzani. Scaling up dynamic time warping for datamining applications. Proc. of the 10th Intl. Conf. on Knowledge Discovery and Data Mining, pages 285-289, 2000.

[5065] Robert Spence. Information Visualization. ACM Press, New York, 2000.

[5066] Michael Steinbach and Pang-Ning Tan and Vipin Kumar and Steven Klooster and Christopher Potter. Discovery of climate indices using clustering. KDD '03: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 446--455, New York, NY, USA, 2003. ACM Press.

[5067] Edward R. Tufte. The Visual Display of Quantitative Information. Graphics Press, Cheshire, CT, 1986.

[5068] John W. Tukey. Exploratory data analysis. Addison-Wesley, 1977.

[5069] Velleman, Paul and Hoaglin, David. The ABC's of EDA: Applications, Basics, and Computing of Exploratory Data Analysis. Duxbury, 1981.

[5070] Bin Zhang and Meichun Hsu and Umeshwar Dayal. K-Harmonic Means---A Data Clustering Algorithm. Technical report, HPL-1999-124, Hewlett Packard Laboratories, 1999.

[5071] Ying Zhao and George Karypis. Empirical and theoretical comparisons of selected criterion functions for document clustering. Machine Learning, 55(3):311--331, 2004.

[5072] Information Visualization in Data Mining and Knowledge Discovery. Morgan Kaufmann Publishers, San Francisco, CA, 2001.

[5073] Mathematica 5.1. Wolfram Research, Inc.. http://www.wolfram.com/, 2005.

[5074] MATLAB 7.0. The MathWorks, Inc.. http://www.mathworks.com, 2005.

[5075] Microsoft Excel 2003. Microsoft, Inc.. http://www.microsoft.com/, 2003.

[4651] Agarwal, R. C. and Shafer, J. C. Parallel Mining of Association Rules. IEEE Transactions on Knowledge and Data Engineering, 8(6):962--969, 1998.

[4652] Aggarwal, C. C. and Sun, Z. and Yu, P. S. Online Generation of Profile Association Rules. KDD98, pages 129--133, New York, NY, 1996.

[4653] Aggarwal, C. C. and Yu, P. S. Mining Associations with the Collective Strength Approach. IEEE Trans. on Knowledge and Data Engineering, 13(6):863--873, 2001.

[4654] Aggarwal, C. C. and Yu, P. S. Mining Large Itemsets for Association Rules. Data Engineering Bulletin, 21(1):23--31, 1998.

[4655] Agrawal, R. and Imielinski, T. and Swami, A. Mining association rules between sets of items in large databases. Proc. ACM SIGMOD Intl. Conf. Management of Data, pages 207--216, Washington, DC, 1993.

[4656] Agrawal, R. and Srikant, R. Mining Sequential Patterns. Proc. of Intl. Conf. on Data Engineering, pages 3--14, Taipei, Taiwan, 1995.

[4657] Aha, D. W. A study of instance-based algorithms for supervised learning tasks: mathematical, empirical, and psychological evaluations. PhD thesis, University of California, Irvine, 1990.

[4658] Ali, K. and Manganaris, S. and Srikant, R. Partial Classification using Association Rules. KDD97, pages 115--118, Newport Beach, CA, 1997.

[4659] Alsabti, K. and Ranka, S. and Singh, V. CLOUDS: A Decision Tree Classifier for Large Datasets. KDD98, pages 2--8, New York, NY, 1998.

[4660] Aumann, Y. and Lindell, Y. A Statistical Theory for Quantitative Association Rules. KDD99, pages 261--270, San Diego, CA, 1999.

[5076] E. F. Codd and S. B. Codd and C. T. Smalley. Providing OLAP (On-line Analytical Processing) to User- Analysts: An IT Mandate. White Paper, E.F. Codd and Associates, 1993.

[5077] Jim Gray and Surajit Chaudhuri and Adam Bosworth and Andrew Layman and Don Reichart and Murali Venkatrao and Frank Pellow and Hamid Pirahesh. Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals. Journal Data Mining and Knowledge Discovery, 1(1):29--53, 1997.

[5078] Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems. McGraw-Hill, 3rd edition, 2002.

[5079] Arie Shoshani. OLAP and statistical databases: similarities and differences. Proc. of the Sixteenth ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems, pages 185--196, 1997. ACM Press.

[5080] Zhong, N. and Yao, Y. Y. and Ohsuga, S. Peculiarity Oriented Multi-database Mining. PKDD99, pages 136--146, Prague, Czech Republic, 1999.

[5081] R: A language and environment for statistical computing and graphics. The R Project for Statistical Computing. http://www.r-project.org/, 2005.

[4679] Allwein, E. L. and Schapire, R. E. and Singer, Y. Reducing Multiclass to Binary: A Unifying Approach to Margin Classifiers. Journal of Machine Learning Research, 1:113--141, 2000.

[4680] Antonie, M-L. and Zaďane, O. R. Mining Positive and Negative Association Rules: An Approach for Confined Rules. PKDD04, pages 27--38, Pisa, Italy, 2004.

[5082] S-PLUS. Insightful Corporation. http://www.insightful.com, 2005.

[5083] SAS: Statistical Analysis System. SAS Institute Inc.. http://www.sas.com/, 2005.

[4683] Ayres, J. and Flannick, J. and Gehrke, J. and Yiu, T. Sequential Pattern mining using a bitmap representation. KDD02, pages 429-435, Edmonton, Canada, 2002.

[4684] Barbará, D. and Couto, J. and Jajodia, S. and Wu, N. ADAM: A Testbed for Exploring the Use of Data Mining in Intrusion Detection. SIGMOD Record, 30(4):15--24, 2001.

[4685] Bay, S. D. and Pazzani, M. Detecting Group Differences: Mining Contrast Sets. Data Mining and Knowledge Discovery, 5(3):213--246, 2001.

[4686] Bayardo, R. Efficiently Mining Long Patterns from Databases. SIGMOD98, pages 85--93, Seattle, WA, 1998.

[4687] Bayardo, R. and Agrawal, R. Mining the Most Interesting Rules. KDD99, pages 145--153, San Diego, CA, 1999.

[4688] Benjamini, Y. and Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal Royal Statistical Society B, 57(1):289--300, 1995.

[4689] Breslow, L. A. and Aha, D. W. Simplifying Decision Trees: A Survey. Knowledge Engineering Review, 12(1):1--40, 1997.

[5084] SPSS: Statistical Package for the Social Sciences. SPSS, Inc.. http://www.spss.com/, 2005.

[4691] Bennett, K. and Campbell, C. Support Vector Machines: Hype or Hallelujah. SIGKDD Explorations, 2(2):1--13, 2000.

[4692] Berry, M. J. A. and Linoff, G. Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management. Wiley Computer Publishing, 2nd edition, 2004.

[4693] Bishop, C. M. Neural Networks for Pattern Recognition. Oxford University Press, Oxford, U.K., 1995.

[4694] Bolton, R. J. and Hand, D. J. and Adams, N. M. Determining Hit Rate in Pattern Search. Proc. of the ESF Exploratory Workshop on Pattern Detection and Discovery in Data Mining, pages 36--48, London, UK, 2002.

[4695] Boulicaut, J-F. and Bykowski, A. and Jeudy, B. Towards the Tractable Discovery of Association Rules with Negations. Proc. of the 4th Intl. Conf on Flexible Query Answering Systems FQAS'00, pages 425--434, Warsaw, Poland, 2000.

[4696] Bradley, A. P. The use of the area under the ROC curve in the Evaluation of Machine Learning Algorithms. Pattern Recognition, 30(7):1145--1149, 1997.

[4697] Paul S. Bradley and Johannes Gehrke and Raghu Ramakrishnan and Ramakrishnan Srikant. Scaling mining algorithms to large databases. Communications of the ACM, 45(8):38-43, 2002.

[4698] Breiman, L. Bagging Predictors. Machine Learning, 24(2):123--140, 1996.

[4699] Breiman, L. Bias, Variance, and Arcing Classifiers. Technical report, 486, University of California, Berkeley, CA, 1996.

[4700] Breiman, L. Random Forests. Machine Learning, 45(1):5--32, 2001.

[4701] Breiman, L. and Friedman, J. H. and Olshen, R. and Stone, C. J. Classification and Regression Trees. Chapman & Hall, New York, 1984.

[4702] Brin, S. and Motwani, R. and Silverstein, C. Beyond market baskets: Generalizing association rules to correlations. Proc. ACM SIGMOD Intl. Conf. Management of Data, pages 265--276, Tucson, AZ, 1997.

[4703] Brin, S. and Motwani, R. and Ullman, J. and Tsur, S. Dynamic Itemset Counting and Implication Rules for market basket data. SIGMOD97, pages 255--264, Tucson, AZ, 1997.

[4704] Buntine, W. Learning classification trees. In Hand, D. J., editors, Artificial Intelligence Frontiers in Statistics, pages 182--201, 1993. Chapman & Hall, London.

[4705] Burges, C. J. C. A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 2(2):121--167, 1998.

[4706] Cai, C. H. and Fu, A. and Cheng, C. H. and Kwong, W. W. Mining Association Rules with Weighted Items. Proc. of IEEE Intl. Database Engineering and Applications Symp., pages 68--77, Cardiff, Wales, 1998.

[4707] Cant u' -Paz, E. and Kamath, C. Using evolutionary algorithms to induce oblique decision trees. Proc. of the Genetic and Evolutionary Computation Conf., pages 1053--1060, San Francisco, CA, 2000.

[4708] Chakrabarti, S. Mining the Web: Discovering Knowledge from Hypertext Data. Morgan Kaufmann, San Francisco, CA, 2003.

[4709] Chawla, N. V. and Bowyer, K. W. and Hall, L. O. and Kegelmeyer, W. P. SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16:321--357, 2002.

[4710] Chawla, N. V. and Japkowicz, N. and Kolcz, A. Editorial: Special Issue on Learning from Imbalanced Data Sets. SIGKDD Explorations, 6(1):1--6, 2004.

[4711] Chen, Q. and Dayal, U. and Hsu, M. A Distributed OLAP infrastructure for E-Commerce. Proc. of the 4th IFCIS Intl. Conf. on Cooperative Information Systems, pages 209--220, Edinburgh, Scotland, 1999.

[4712] Cheng, H. and Yan, X. and Han, J. IncSpan: incremental mining of sequential patterns in large database. KDD04, pages 527-532, Seattle, WA, 2004.

[4713] Cherkassky, V. and Mulier, F. Learning from Data: Concepts, Theory, and Methods. Wiley Interscience, 1998.

[4714] Cheung, D. C. and Lee, S. D. and Kao, B. A General Incremental Technique for Maintaining Discovered Association Rules. Proc. of the 5th Intl. Conf. on Database Systems for Advanced Applications, pages 185--194, Melbourne, Australia, 1997.

[4715] Clark, P. and Boswell, R. Rule Induction with CN2: Some Recent Improvements. Machine Learning: Proc. of the 5th European Conf. (EWSL-91), pages 151--163, 1991.

[4716] Clark, P. and Niblett, T. The CN2 Induction Algorithm. Machine Learning, 3(4):261--283, 1989.

[4717] Cohen, W. W. Fast Effective Rule Induction. ICML95, pages 115--123, Tahoe City, CA, 1995.

[4718] Cooley, R. and Tan, P. N. and Srivastava, J. Discovery of Interesting Usage Patterns from Web Data. In Spiliopoulou, M. and Masand, B., editors, Advances in Web Usage Analysis and User Profiling, pages 163--182. Lecture Notes in Computer Science, 2000.

[4719] Cost, S. and Salzberg, S. A Weighted Nearest Neighbor Algorithm for Learning with Symbolic Features. Machine Learning, 10:57--78, 1993.

[4720] Cover, T. M. and Hart, P. E. Nearest Neighbor Pattern Classification. Knowledge Based Systems, 8(6):373--389, 1995.

[4721] Cristianini, N. and Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, 2000.

[4722] Dietterich, T. G. Ensemble Methods in Machine Learning. First Intl. Workshop on Multiple Classifier Systems, Cagliari, Italy, 2000.

[4723] Dietterich, T. G. and Bakiri, G. Solving Multiclass Learning Problems via Error-Correcting Output Codes. Journal of Artificial Intelligence Research, 2:263--286, 1995.

[4724] Dokas, P. and Ertöz, L. and Kumar, V. and Lazarevic, A. and Srivastava, J. and Tan, P. N. Data Mining for Network Intrusion Detection. Proc. NSF Workshop on Next Generation Data Mining, Baltimore, MD, 2002.

[4725] Domingos, P. MetaCost: A General Method for Making Classifiers Cost-Sensitive. KDD99, pages 155--164, San Diego, CA, 1999.

[4726] Domingos, P. The RISE system: Conquering without separating. Proc. of the 6th IEEE Intl. Conf. on Tools with Artificial Intelligence, pages 704--707, New Orleans, LA, 1994.

[4727] Domingos, P. The Role of Occam's Razor in Knowledge Discovery. Data Mining and Knowledge Discovery, 3(4):409--425, 1999.

[4728] Domingos, P. and Pazzani, M. On the Optimality of the Simple Bayesian Classifier under Zero-One Loss. Machine Learning, 29(2-3):103--130, 1997.

[4729] Dong, G. and Li, J. Efficient Mining of Emerging Patterns: Discovering Trends and Differences. KDD99, pages 43--52, San Diego, CA, 1999.

[4730] Dong, G. and Li, J. Interestingness of discovered association rules in terms of neighborhood-based unexpectedness. PAKDD98, pages 72--86, Melbourne, Australia, 1998.

[4731] Drummond, C. and Holte, R. C. C4.5, Class imbalance, and Cost sensitivity: Why under-sampling beats over-sampling. ICML'2004 Workshop on Learning from Imbalanced Data Sets II, Washington, DC, 2003.

[4732] Duda, R. O. and Hart, P. E. and Stork, D. G. Pattern Classification. John Wiley & Sons, Inc., New York, 2nd edition, 2001.

[4733] DuMouchel, W. and Pregibon, D. Empirical Bayes Screening for Multi-Item Associations. KDD01, pages 67--76, San Francisco, CA, 2001.

[4734] Dunham, M. H. Data Mining: Introductory and Advanced Topics. Prentice Hall, 2002.

[4735] Dunkel, B. and Soparkar, N. Data Organization and Access for Efficient Data Mining. ICDE99, pages 522--529, Sydney, Australia, 1999.

[4736] Efron, B. and Tibshirani, R. Cross-validation and the Bootstrap: Estimating the Error Rate of a Prediction Rule. Technical report, Stanford University, 1995.

[4737] Elkan, C. The Foundations of Cost-Sensitive Learning. Proc. of the 17th Intl. Joint Conf. on Artificial Intelligence, pages 973--978, Seattle, WA, 2001.

[4738] Esposito, F. and Malerba, D. and Semeraro, G. A Comparative Analysis of Methods for Pruning Decision Trees. IEEE Trans. Pattern Analysis and Machine Intelligence, 19(5):476--491, 1997.

[4739] F u ¨ rnkranz, J. and Widmer, G. Incremental reduced error pruning. ICML94, pages 70--77, New Brunswick, NJ, 1994.

[4740] Fabris, C. C. and Freitas, A. A. Discovering surprising patterns by detecting occurrences of Simpson's paradox. Proc. of the 19th SGES Intl. Conf. on Knowledge-Based Systems and Applied Artificial Intelligence), pages 148--160, Cambridge, UK, 1999.

[4741] Fan, W. and Stolfo, S. J. and Zhang, J. and Chan, P. K. AdaCost: misclassification cost-sensitive boosting. ICML99, pages 97--105, Bled, Slovenia, 1999.

[4742] Usama M. Fayyad and Gregory Piatetsky-Shapiro and Padhraic Smyth. From Data Mining to Knowledge Discovery: An Overview. Advances in Knowledge Discovery and Data Mining, pages 1-34. AAAI Press, 1996.

[4743] Feng, L. and Lu, H. J. and Yu, J. X. and Han, J. Mining inter-transaction associations with templates. CIKM99, pages 225--233, Kansas City, Missouri, 1999.

[4744] Ferri, C. and Flach, P. and Hernandez-Orallo, J. Learning Decision Trees Using the Area Under the ROC Curve. ICML02, pages 139--146, Sydney, Australia, 2002.

[4745] Fisher, R. A. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7:179--188, 1936.

[4746] Freitas, A. A. Understanding the crucial differences between classification and discovery of association rules---a position paper. SIGKDD Explorations, 2(1):65--69, 2000.

[4747] Freund, Y. and Schapire, R. E. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119--139, 1997.

[4748] Friedman, J. H. Data Mining and Statistics: What's the Connection?. Unpublished. www-stat.stanford.edu/ : jhf/ftp/dm-stat.ps, 1997.

[4749] Friedman, J. H. and Fisher, N. I. Bump hunting in high-dimensional data. Statistics and Computing, 9(2):123--143, 1999.

[4750] Fukuda, T. and Morimoto, Y. and Morishita, S. and Tokuyama, T. Mining Optimized Association Rules for Numeric Attributes. PODS96, pages 182--191, Montreal, Canada, 1996.

[4751] Fukunaga, K. Introduction to Statistical Pattern Recognition. Academic Press, New York, 1990.

[4752] Garofalakis, M. N. and Rastogi, R. and Shim, K. SPIRIT: Sequential Pattern Mining with Regular Expression Constraints. VLDB99, pages 223--234, Edinburgh, Scotland, 1999.

[4753] Gehrke, J. and Ramakrishnan, R. and Ganti, V. RainForest---A Framework for Fast Decision Tree Construction of Large Datasets. Data Mining and Knowledge Discovery, 4(2/3):127--162, 2000.

[4754] Clark Glymour and David Madigan and Daryl Pregibon and Padhraic Smyth. Statistical Themes and Lessons for Data Mining. Data Mining and Knowledge Discovery, 1(1):11--28, 1997.

[4755] Robert L. Grossman and Mark F. Hornick and Gregor Meyer. Data mining standards initiatives. Communications of the ACM, 45(8):59-61, 2002.

[4756] Gunopulos, D. and Khardon, R. and Mannila, H. and Toivonen, H. Data Mining, Hypergraph Transversals, and Machine Learning. PODS97, pages 209--216, Tucson, AZ, 1997.

[4757] Han, E.-H. and Karypis, G. and Kumar, V. Min-Apriori: An Algorithm for Finding Association Rules in Data with Continuous Attributes. http://www.cs.umn.edu/han, 1997.

[4758] Han, E.-H. and Karypis, G. and Kumar, V. Scalable Parallel Data Mining for Association Rules. SIGMOD97, pages 277--288, Tucson, AZ, 1997.

[4759] Han, E.-H. and Karypis, G. and Kumar, V. Text Categorization Using Weight Adjusted k-Nearest Neighbor Classification. PAKDD01, Lyon, France, 2001.

[4760] Han, E.-H. and Karypis, G. and Kumar, V. and Mobasher, B. Clustering Based on Association Rule Hypergraphs. DMKD97, Tucson, AZ, 1997.

[4761] Han, J. and Fu, Y. Mining Multiple-Level Association Rules in Large Databases. IEEE Trans. on Knowledge and Data Engineering, 11(5):798--804, 1999.

[4762] Han, J. and Fu, Y. and Koperski, K. and Wang, W. and Zaďane, O. R. DMQL: A data mining query language for relational databases. DMKD96, Montreal, Canada, 1996.

[4763] Han, J. and Kamber, M. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, San Francisco, 2001.

[4764] Han, J. and Pei, J. and Yin, Y. Mining Frequent Patterns without Candidate Generation. Proc. ACM-SIGMOD Int. Conf. on Management of Data (SIGMOD'00), pages 1--12, Dallas, TX, 2000.

[4765] Jiawei Han and Russ B. Altman and Vipin Kumar and Heikki Mannila and Daryl Pregibon. Emerging scientific applications in data mining. Communications of the ACM, 45(8):54-58, 2002.

[4766] Hand, D. J. Data Mining: Statistics and More?. The American Statistician, 52(2):112--118, 1998.

[4767] Hand, D. J. and Mannila, H. and Smyth, P. Principles of Data Mining. MIT Press, 2001.

[4768] Hastie, T. and Tibshirani, R. Classification by pairwise coupling. Annals of Statistics, 26(2):451--471, 1998.

[4769] Hastie, T. and Tibshirani, R. and Friedman, J. H. The Elements of Statistical Learning: Data Mining, Inference, Prediction. Springer, New York, 2001.

[4770] Hearst, M. Trends & Controversies: Support Vector Machines. IEEE Intelligent Systems, 13(4):18--28, 1998.

[4771] Heath, D. and Kasif, S. and Salzberg, S. Induction of Oblique Decision Trees. Proc. of the 13th Intl. Joint Conf. on Artificial Intelligence, pages 1002--1007, Chambery, France, 1993.

[4772] Heckerman, D. Bayesian Networks for Data Mining. Data Mining and Knowledge Discovery, 1(1):79--119, 1997.

[4773] Hidber, C. Online Association Rule Mining. SIGMOD99, pages 145--156, Philadelphia, PA, 1999.

[4774] Hilderman, R. J. and Hamilton, H. J. Knowledge Discovery and Measures of Interest. Kluwer Academic Publishers, 2001.

[4775] Hipp, J. and Guntzer, U. and Nakhaeizadeh, G. Algorithms for Association Rule Mining---A General Survey. SigKDD Explorations, 2(1):58--64, 2000.

[4776] Hofmann, H. and Siebes, A. P. J. M. and Wilhelm, A. F. X. Visualizing Association Rules with Interactive Mosaic Plots. KDD00, pages 227--235, Boston, MA, 2000.

[4777] Holt, J. D. and Chung, S. M. Efficient Mining of Association Rules in Text Databases. CIKM99, pages 234--242, Kansas City, Missouri, 1999.

[4778] Holte, R. C. Very Simple Classification Rules Perform Well on Most Commonly Used Data sets. Machine Learning, 11:63--91, 1993.

[4779] Houtsma, M. and Swami, A. Set-oriented Mining for Association Rules in Relational Databases. ICDE95, pages 25--33, Taipei, Taiwan, 1995.

[4780] Huang, Y. and Shekhar, S. and Xiong, H. Discovering Co-location Patterns from Spatial Datasets: A General Approach. IEEE Trans. on Knowledge and Data Engineering, 16(12):1472--1485, 2004.

[4781] Imielinski, T. and Virmani, A. and Abdulghani, A. DataMine: Application Programming Interface and Query Language for Database Mining. KDD96, pages 256--262, Portland, Oregon, 1996.

[4782] Inokuchi, A. and Washio, T. and Motoda, H. An Apriori-based Algorithm for Mining Frequent Substructures from Graph Data. PKDD00, pages 13--23, Lyon, France, 2000.

[4783] Jain, A. K. and Duin, R. P. W. and Mao, J. Statistical Pattern Recognition: A Review. IEEE Tran. Patt. Anal. and Mach. Intellig., 22(1):4--37, 2000.

[4784] Japkowicz, N. The Class Imbalance Problem: Significance and Strategies. Proc. of the 2000 Intl. Conf. on Artificial Intelligence: Special Track on Inductive Learning, pages 111--117, Las Vegas, NV, 2000.

[4785] Jaroszewicz, S. and Simovici, D. Interestingness of Frequent Itemsets Using Bayesian Networks as Background Knowledge. KDD04, pages 178--186, Seattle, WA, 2004.

[4786] Jensen, D. and Cohen, P. R. Multiple Comparisons in Induction Algorithms. Machine Learning, 38(3):309--338, 2000.

[4787] Joshi, M. V. On Evaluating Performance of Classifiers for Rare Classes. ICDM02, Maebashi City, Japan, 2002.

[4788] Joshi, M. V. and Agarwal, R. C. and Kumar, V. Mining Needles in a Haystack: Classifying Rare Classes via Two-Phase Rule Induction. SIGMOD01, pages 91-102, Santa Barbara, CA, 2001.

[4789] Joshi, M. V. and Agarwal, R. C. and Kumar, V. Predicting rare classes: can boosting make any weak learner strong?. KDD02, pages 297-306, Edmonton, Canada, 2002.

[4790] Joshi, M. V. and Karypis, G. and Kumar, V. A Universal Formulation of Sequential Patterns. Proc. of the KDD'2001 workshop on Temporal Data Mining, San Francisco, CA, 2001.

[4791] Joshi, M. V. and Karypis, G. and Kumar, V. ScalParC: A New Scalable and Efficient Parallel Classification Algorithm for Mining Large Datasets. Proc. of 12th Intl. Parallel Processing Symp. (IPPS/SPDP), pages 573-579, Orlando, FL, 1998.

[4792] Joshi, M. V. and Kumar, V. CREDOS: Classification Using Ripple Down Structure (A Case for Rare Classes). SDM04, pages 321-332, Orlando, FL, 2004.

[4793] Kamber, M. and Shinghal, R. Evaluating the Interestingness of Characteristic Rules. KDD96, pages 263--266, Portland, Oregon, 1996.

[4794] Kantardzic, M. Data Mining: Concepts, Models, Methods, and Algorithms. Wiley-IEEE Press, Piscataway, NJ, 2003.

[4795] Kass, G. V. An Exploratory Technique for Investigating Large Quantities of Categorical Data. Applied Statistics, 29:119--127, 1980.

[4796] Kim, B. and Landgrebe, D. Hierarchical decision classifiers in high-dimensional and large class data. IEEE Trans. on Geoscience and Remote Sensing, 29(4):518--528, 1991.

[4797] Klemettinen, M. A Knowledge Discovery Methodology for Telecommunication Network Alarm Databases. PhD thesis, University of Helsinki, 1999.

[4798] Kohavi, R. A Study on Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. Proc. of the 15th Intl. Joint Conf. on Artificial Intelligence, pages 1137--1145, Montreal, Canada, 1995.

[4799] Kong, E. B. and Dietterich, T. G. Error-Correcting Output Coding Corrects Bias and Variance. ICML95, pages 313--321, Tahoe City, CA, 1995.

[4800] Kosters, W. A. and Marchiori, E. and Oerlemans, A. Mining Clusters with Association Rules. The 3rd Symp. on Intelligent Data Analysis (IDA99), pages 39--50, Amsterdam, 1999.

[4801] Kubat, M. and Matwin, S. Addressing the Curse of Imbalanced Training Sets: One Sided Selection. ICML97, pages 179--186, Nashville, TN, 1997.

[4802] Kulkarni, S. R. and Lugosi, G. and Venkatesh, S. S. Learning Pattern Classification---A Survey. IEEE Tran. Inf. Theory, 44(6):2178--2206, 1998.

[4803] Kumar, V. and Joshi, M. V. and Han, E.-H. and Tan, P. N. and Steinbach, M. High Performance Data Mining. High Performance Computing for Computational Science (VECPAR 2002), pages 111-125. Springer, 2002.

[4804] Kuok, C. M. and Fu, A. and Wong, M. H. Mining Fuzzy Association Rules in Databases. ACM SIGMOD Record, 27(1):41--46, 1998.

[4805] Kuramochi, M. and Karypis, G. Discovering Frequent Geometric Subgraphs. ICDM02, pages 258--265, Maebashi City, Japan, 2002.

[4806] Kuramochi, M. and Karypis, G. Frequent Subgraph Discovery. ICDM01, pages 313--320, San Jose, CA, 2001.

[4807] Diane Lambert. What Use is Statistics for Massive Data?. ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, pages 54-62, 2000.

[4808] Landeweerd, G. and Timmers, T. and Gersema, E. and Bins, M. and Halic, M. Binary tree versus single level tree classification of white blood cells. Pattern Recognition, 16:571--577, 1983.

[4809] Langley, P. and Iba, W. and Thompson, K. An analysis of Bayesian classifiers. Proc. of the 10th National Conf. on Artificial Intelligence, pages 223--228, 1992.

[4810] Lee, W. and Stolfo, S. J. and Mok, K. W. Adaptive Intrusion Detection: A Data Mining Approach. Artificial Intelligence Review, 14(6):533--567, 2000.

[4811] Lent, B. and Swami, A. and Widom, J. Clustering Association Rules. ICDE97, pages 220--231, Birmingham, U.K, 1997.

[4812] Lewis, D. D. Naive Bayes at Forty: The Independence Assumption in Information Retrieval. Proc. of the 10th European Conf. on Machine Learning (ECML 1998), pages 4--15, 1998.

[4813] Li, W. and Han, J. and Pei, J. CMAR: Accurate and Efficient Classification Based on Multiple Class-association Rules. ICDM01, pages 369--376, San Jose, CA, 2001.

[4814] Liu, B. and Hsu, W. and Chen, S. Using General Impressions to Analyze Discovered Classification Rules. KDD97, pages 31--36, Newport Beach, CA, 1997.

[4815] Liu, B. and Hsu, W. and Ma, Y. Integrating Classification and Association Rule Mining. KDD98, pages 80--86, New York, NY, 1998.

[4816] Liu, B. and Hsu, W. and Ma, Y. Mining association rules with multiple minimum supports. KDD99, pages 125--134, San Diego, CA, 1999.

[4817] Liu, B. and Hsu, W. and Ma, Y. Pruning and Summarizing the Discovered Associations. KDD99, pages 125--134, San Diego, CA, 1999.

[4818] Mangasarian, O. Data Mining via Support Vector Machines. Technical report, Technical Report 01-05, Data Mining Institute, 2001.

[4819] Mannila, H. and Toivonen, H. and Verkamo, A. I. Discovery of Frequent Episodes in Event Sequences. Data Mining and Knowledge Discovery, 1(3):259--289, 1997.

[4820] Marcus, A. and Maletic, J. I. and Lin, K.-I. Ordinal association rules for error identification in data sets. CIKM01, pages 589--591, Atlanta, GA, 2001.

[4821] Margineantu, D. D. and Dietterich, T. G. Learning Decision Trees for Loss Minimization in Multi-Class Problems.Technical report, 99-30-03, Oregon State University, 1999.

[4822] Megiddo, N. and Srikant, R. Discovering Predictive Association Rules. KDD98, pages 274--278, New York, 1998.

[4823] Mehta, M. and Agrawal, R. and Rissanen, J. SLIQ: A Fast Scalable Classifier for Data Mining. Proc. of the 5th Intl. Conf. on Extending Database Technology, pages 18--32, Avignon, France, 1996.

[4824] Meo, R. and Psaila, G. and Ceri, S. A New SQL-like Operator for Mining Association Rules. VLDB96, pages 122--133, Bombay, India, 1996.

[4825] Michalski, R. S. A theory and methodology of inductive learning. Artificial Intelligence, 20:111--116, 1983.

[4826] Michalski, R. S. and Mozetic, I. and Hong, J. and Lavrac, N. The Multi-Purpose Incremental Learning System AQ15 and Its Testing Application to Three Medical Domains. Proc. of 5th National Conf. on Artificial Intelligence, Orlando, 1986.

[4827] Michie, D. and Spiegelhalter, D. J. and Taylor, C. C. Machine Learning, Neural and Statistical Classification. Ellis Horwood, Upper Saddle River, NJ, 1994.

[4828] Miller, R. J. and Yang, Y. Association Rules over Interval Data. SIGMOD97, pages 452--461, Tucson, AZ, 1997.

[4829] Mingers, J. An empirical comparison of pruning methods for decision tree induction. Machine Learning, 4:227--243, 1989.

[4830] Mingers, J. Expert Systems---Rule Induction with Statistical Data. J Operational Research Society, 38:39--47, 1987.

[4831] Mitchell, T. Machine Learning. McGraw-Hill, Boston, MA, 1997.

[4832] Moret, B. M. E. Decision Trees and Diagrams. Computing Surveys, 14(4):593--623, 1982.

[4833] Morimoto, Y. and Fukuda, T. and Matsuzawa, H. and Tokuyama, T. and Yoda, K. Algorithms for mining association rules for binary segmentations of huge categorical databases. VLDB98, pages 380--391, New York, 1998.

[4834] Mosteller, F. Association and Estimation in Contingency Tables. Journal of the American Statistical Association, 63:1--28, 1968.

[4835] Mueller, A. Fast sequential and parallel algorithms for association rule mining: A comparison. Technical report, CS-TR-3515, University of Maryland, 1995.

[4836] Muggleton, S. Foundations of Inductive Logic Programming. Prentice Hall, Englewood Cliffs, NJ, 1995.

[4837] Murthy, S. K. Automatic Construction of Decision Trees from Data: A Multi-Disciplinary Survey. Data Mining and Knowledge Discovery, 2(4):345--389, 1998.

[4838] Murthy, S. K. and Kasif, S. and Salzberg, S. A system for induction of oblique decision trees. J of Artificial Intelligence Research, 2:1--33, 1994.

[4839] Ng, R. T. and Lakshmanan, L. V. S. and Han, J. and Pang, A. Exploratory Mining and Pruning Optimizations of Constrained Association Rules. SIGMOD98, pages 13--24, Seattle, WA, 1998.

[4840] Niblett, T. Constructing decision trees in noisy domains. Proc. of the 2nd European Working Session on Learning, pages 67--78, Bled, Yugoslavia, 1987.

[4841] Niblett, T. and Bratko, I. Learning Decision Rules in Noisy Domains. In Bramer, M., editors, Research and Development in Expert Systems III, Cambridge, 1986. Cambridge University Press.

[4842] Omiecinski, E. Alternative Interest Measures for Mining Associations in Databases. IEEE Trans. on Knowledge and Data Engineering, 15(1):57--69, 2003.

[4843] Ozden, B. and Ramaswamy, S. and Silberschatz, A. Cyclic Association Rules. DE98, pages 412--421, Orlando, FL, 1998.

[4844] Ozgur, A. and Tan, P. N. and Kumar, V. RBA: An Integrated Framework for Regression based on Association Rules. SDM04, pages 210--221, Orlando, FL, 2004.

[4845] Park, J. S. and Chen, M.-S. and Yu, P. S. An effective hash-based algorithm for mining association rules. SIGMOD Record, 25(2):175--186, 1995.

[4846] Parr Rud, O. Data Mining Cookbook: Modeling Data for Marketing, Risk and Customer Relationship Management. John Wiley & Sons, New York, NY, 2001.

[4847] Parthasarathy, S. and Coatney, M. Efficient Discovery of Common Substructures in Macromolecules. ICDM02, pages 362--369, Maebashi City, Japan, 2002.

[4848] Pasquier, N. and Bastide, Y. and Taouil, R. and Lakhal, L. Discovering frequent closed itemsets for association rules. Proc. of the 7th Intl. Conf. on Database Theory (ICDT'99), pages 398--416, Jerusalem, Israel, 1999.

[4849] Pattipati, K. R. and Alexandridis, M. G. Application of heuristic search and information theory to sequential fault diagnosis. IEEE Trans. on Systems, Man, and Cybernetics, 20(4):872--887, 1990.

[4850] Pei, J. and Han, J. and Lu, H. J. and Nishio, S. and Tang, S. H-Mine: Hyper-Structure Mining of Frequent Patterns in Large Databases. ICDM01, pages 441--448, San Jose, CA, 2001.

[4851] Pei, J. and Han, J. and Mortazavi-Asl, B. and Chen, Q. and Dayal, U. and Hsu, M. PrefixSpan: Mining Sequential Patterns efficiently by prefix-projected pattern growth. Proc of the 17th Intl. Conf. on Data Engineering, Heidelberg, Germany, 2001.

[4852] Pei, J. and Han, J. and Mortazavi-Asl, B. and Zhu, H. Mining Access Patterns Efficiently from Web Logs. PAKDD00, pages 396--407, Kyoto, Japan, 2000.

[4853] Piatetsky-Shapiro, G. Discovery, Analysis and Presentation of Strong Rules. In G. Piatetsky-Shapiro and W. Frawley, editors, Knowledge Discovery in Databases, pages 229--248. MIT Press, Cambridge, MA, 1991.

[4854] Potter, C. and Klooster, S. and Steinbach, M. and Tan, P. N. and Kumar, V. and Shekhar, S. and Carvalho, C. Understanding Global Teleconnections of Climate to Regional Model Estimates of Amazon Ecosystem Carbon Fluxes. Global Change Biology, 10(5):693--703, 2004.

[4855] Potter, C. and Klooster, S. and Steinbach, M. and Tan, P. N. and Kumar, V. and Shekhar, S. and Myneni, R. and Nemani, R. Global Teleconnections of Ocean Climate to Terrestrial Carbon Flux. J. Geophysical Research, 108(D17), 2003.

[4856] Provost, F. J. and Fawcett, T. Analysis and Visualization of Classifier Performance: Comparison under Imprecise Class and Cost Distributions. KDD97, pages 43--48, Newport Beach, CA, 1997.

[4857] Pyle, D. Business Modeling and Data Mining. Morgan Kaufmann, San Francisco, CA, 2003.

[4858] Quinlan, J. R. C4.5: Programs for Machine Learning. Morgan-Kaufmann Publishers, San Mateo, CA, 1993.

[4859] Quinlan, J. R. Discovering rules by induction from large collection of examples. In Michie, D., editors, Expert Systems in the Micro Electronic Age. Edinburgh University Press, Edinburgh, UK, 1979.

[4860] Quinlan, J. R. Simplifying Decision Trees. Intl. J. Man-Machine Studies, 27:221--234, 1987.

[4861] Quinlan, J. R. and Rivest, R. L. Inferring Decision Trees Using the Minimum Description Length Principle. Information and Computation, 80(3):227--248, 1989.

[4862] Naren Ramakrishnan and Ananth Grama. Data Mining: From Serendipity to Science---Guest Editors' Introduction. IEEE Computer, 32(8):34-37, 1999.

[4863] Ramkumar, G. D and Ranka, S. and Tsur, S. Weighted Association Rules: Model and Algorithm. http://www.cs.ucla.edu/czdemo/tsur/, 1997.

[4864] Ramoni, M. and Sebastiani, P. Robust Bayes classifiers. Artificial Intelligence, 125:209--226, 2001.

[4865] van Rijsbergen, C. J. Information Retrieval. Butterworth-Heinemann, Newton, MA, 1978.

[4866] Roiger, R. and Geatz, M. Data Mining: A Tutorial Based Primer. Addison-Wesley, 2002.

[4867] Safavian, S. R. and Landgrebe, D. A Survey of Decision Tree Classifier Methodology. IEEE Trans. Systems, Man and Cybernetics, 22:660--674, 1998.

[4868] Sarawagi, S. and Thomas, S. and Agrawal, R. Integrating Mining with Relational Database Systems: Alternatives and Implications. SIGMOD98, pages 343--354, Seattle, WA, 1998.

[4869] Satou, K. and Shibayama, G. and Ono, T. and Yamamura, Y. and Furuichi,E. and Kuhara, S. and Takagi, T. Finding Association Rules on Heterogeneous Genome Data. Proc. of the Pacific Symp. on Biocomputing, pages 397--408, Hawaii, 1997.

[4870] Savasere, A. and Omiecinski, E. and Navathe, S. An efficient algorithm for mining association rules in large databases. Proc. of the 21st Int. Conf. on Very Large Databases (VLDB`95), pages 432-444, Zurich, Switzerland, 1995.

[4871] A. Savasere and E. Omiecinski and S. Navathe. Mining for Strong Negative Associations in a Large Database of Customer Transactions. ICDE98, pages 494--502, Orlando, Florida, 1998.

[4872] Schaffer, C. Overfitting avoidence as bias. Machine Learning, 10:153--178, 1993.

[4873] Schapire, R. E. The Boosting Approach to Machine Learning: An Overview. MSRI Workshop on Nonlinear Estimation and Classification, 2002.

[4874] Schölkopf, B. and Smola, A. J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, 2001.

[4875] Schuermann, J. and Doster, W. A decision-theoretic approach in hierarchical classifier design. Pattern Recognition, 17:359--369, 1984.

[4876] Advances in Distributed and Parallel Knowledge Discovery. AAAI Press, 2002.

[4877] Advances in Knowledge Discovery and Data Mining.. AAAI/MIT Press, 1996.

[4878] Rakesh Agrawal and Johannes Gehrke and Dimitrios Gunopulos and Prabhakar Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. In Laura M. Haas and Ashutosh Tiwary, editors, SIGMOD98, pages 94--105, Seattle, Washington, 1998. ACM Press.

[4879] Ming-Syan Chen and Jiawei Han and Philip S. Yu. Data Mining: An Overview from a Database Perspective. IEEE Transactions on Knowledge abd Data Engineering, 8(6):866-883, 1996.

[4880] Seno, M. and Karypis, G. LPMiner: An Algorithm for Finding Frequent Itemsets Using Length-Decreasing Support Constraint. ICDM01, pages 505--512, San Jose, CA, 2001.

[4881] Seno, M. and Karypis, G. SLPMiner: An Algorithm for Finding Frequent Sequential Patterns Using Length-Decreasing Support Constraint. ICDM02, pages 418--425, Maebashi City, Japan, 2002.

[4882] Shafer, J. C. and Agrawal, R. and Mehta, M. SPRINT: A Scalable Parallel Classifier for Data Mining. VLDB96, pages 544--555, Bombay, India, 1996.

[4883] Shintani, T. and Kitsuregawa, M. Hash based parallel algorithms for mining association rules. Proc of the 4th Intl. Conf. on Parallel and Distributed Info. Systems, pages 19--30, Miami Beach, FL, 1996.

[4884] Silberschatz, A. and Tuzhilin, A. What makes patterns interesting in knowledge discovery systems. IEEE Trans. on Knowledge and Data Engineering, 8(6):970--974, 1996.

[4885] Silverstein, C. and Brin, S. and Motwani, R. Beyond market baskets: Generalizing association rules to dependence rules. Data Mining and Knowledge Discovery, 2(1):39--68, 1998.

[4886] Simpson, E.-H. The Interpretation of Interaction in Contingency Tables. Journal of the Royal Statistical Society, B(13):238--241, 1951.

[4887] Singh, L. and Chen, B. and Haight, R. and Scheuermann, P. An Algorithm for Constrained Association Rule Mining in Semi-structured Data. PAKDD99, pages 148--158, Beijing, China, 1999.

[4888] Smyth, P. and Goodman, R. M. An Information Theoretic Approach to Rule Induction from Databases. IEEE Trans. on Knowledge and Data Engineering, 4(4):301--316, 1992.

[4889] Padhraic Smyth. Breaking out of the Black-Box: Research Challenges in Data Mining. DMKD01, 2001.

[4890] Padhraic Smyth and Daryl Pregibon and Christos Faloutsos. Data-driven evolution of data mining algorithms. Communications of the ACM, 45(8):33-37, 2002.

[4891] Srikant, R. and Agrawal, R. Mining Generalized Association Rules. VLDB95, pages 407--419, Zurich, Switzerland, 1995.

[4892] Srikant, R. and Agrawal, R. Mining Quantitative Association Rules in Large Relational Tables. SIGMOD96, pages 1--12, Montreal, Canada, 1996.

[4893] Srikant, R. and Agrawal, R. Mining Sequential Patterns: Generalizations and Performance Improvements. Proc. of the 5th Intl Conf. on Extending Database Technology (EDBT'96), pages 18--32, Avignon, France, 1996.

[4894] Srikant, R. and Vu, Q. and Agrawal, R. Mining Association Rules with Item Constraints. KDD97, pages 67--73, Newport Beach, CA, 1997.

[4895] Steinbach, M. and Tan, P. N. and Kumar, V. Support Envelopes: A Technique for Exploring the Structure of Association Patterns. KDD04, pages 296--305, Seattle, WA, 2004.

[4896] Steinbach, M. and Tan, P. N. and Xiong, H. and Kumar, V. Extending the Notion of Support. KDD04, pages 689--694, Seattle, WA, 2004.

[4897] Suzuki, E. Autonomous Discovery of Reliable Exception Rules. KDD97, pages 259--262, Newport Beach, CA, 1997.

[4898] Tan, P. N. and Kumar, V. Mining Association Patterns in Web Usage Data. Proc. of the Intl. Conf. on Advances in Infrastructure for e-Business, e-Education, e-Science and e-Medicine on the Internet, L'Aquila, Italy, 2002.

[4899] Tan, P. N. and Kumar, V. and Srivastava, J. Indirect Association: Mining Higher Order Dependencies in Data. PKDD00, pages 632--637, Lyon, France, 2000.

[4900] Tan, P. N. and Kumar, V. and Srivastava, J. Selecting the Right Interestingness Measure for Association Patterns. KDD02, pages 32--41, Edmonton, Canada, 2002.

[4901] Tan, P. N. and Steinbach, M. and Kumar, V. and Klooster, S. and Potter, C. and Torregrosa, A. Finding Spatio-Temporal Patterns in Earth Science Data. KDD 2001 Workshop on Temporal Data Mining, San Francisco, CA, 2001.

[4902] Tax, D. M. J. and Duin, R. P. W. Using Two-Class Classifiers for Multiclass Classification. Proc. of the 16th Intl. Conf. on Pattern Recognition (ICPR 2002), pages 124--127, Quebec, Canada, 2002.

[4903] Teng, W. G. and Hsieh, M. J. and Chen, M.-S. On the Mining of Substitution Rules for Statistically Dependent Items. ICDM02, pages 442--449, Maebashi City, Japan, 2002.

[4904] Toivonen, H and Klemettinen, M. and Ronkainen, P. and Hatonen, K. and Mannila, H. Pruning and Grouping Discovered Association Rules. ECML-95 Workshop on Statistics, Machine Learning and Knowledge Discovery in Databases, pages 47 -- 52, Heraklion, Greece, 1995.

[4905] Toivonen, H. Sampling Large Databases for Association Rules. VLDB96, pages 134--145, Bombay, India, 1996.

[4906] Tsur, S. and Ullman, J. and Abiteboul, S. and Clifton, C. and Motwani, R. and Nestorov, S. and Rosenthal, A. Query Flocks: A Generalization of Association Rule Mining. SIGMOD98, pages 1--12, Seattle, WA, 1998.

[4907] Tung, Anthony and Lu, H. J. and Han, Jiawei and Feng, Ling. Breaking the Barrier of Transactions: Mining Inter-Transaction Association Rules. KDD99, pages 297--301, San Diego, CA, 1999.

[4908] Utgoff, P. E. and Brodley, C. E. An incremental method for finding multivariate splits for decision trees. ICML90, pages 58--65, Austin, TX, 1990.

[4909] Vapnik, V. Statistical Learning Theory. John Wiley & Sons, New York, 1998.

[4910] Vapnik, V. The Nature of Statistical Learning Theory. Springer Verlag, New York, 1995.

[4911] Wang, H. and Zaniolo, C. CMP: A Fast Decision Tree Classifier Using Multivariate Predictions. ICDE00, pages 449--460, San Diego, CA, 2000.

[4912] Wang, K. and He, Y. and Han, J. Mining Frequent Itemsets Using Support Constraints. VLDB00, pages 43--52, Cairo, Egypt, 2000.

[4913] Wang, K. and Tay, S. H. and Liu, B. Interestingness-Based Interval Merger for Numeric Association Rules. KDD98, pages 121--128, New York, NY, 1998.

[4914] Wang, Q. R. and Suen, C. Y. Large tree classifier with heuristic search and global training. IEEE Trans. on Pattern Analysis and Machine Intelligence, 9(1):91--102, 1987.

[4915] Webb, A. R. Statistical Pattern Recognition. John Wiley & Sons, 2nd edition, 2002.

[4916] Webb, G. I. Discovering associations with numeric variables. KDD01, pages 383--388, San Francisco, CA, 2001.

[4917] Webb, G. I. Preliminary investigations into statistically valid exploratory rule discovery. Proc. of the Australasian Data Mining Workshop (AusDM03), Canberra, Australia, 2003.

[4918] Weiss, G. M. Mining with Rarity: A Unifying Framework. SIGKDD Explorations, 6(1):7--19, 2004.

[4919] Witten, I. H. and Frank, E. Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, 1999.

[4920] Wu, X. and Zhang, C. and Zhang, S. Mining Both Positive and Negative Association Rules. ACM Trans. on Information Systems, 22(3):381--405, 2004.

[4921] Xindong Wu and Philip S. Yu and Gregory Piatetsky-Shapiro. Data Mining: How Research Meets Practical Development?. Knowledge and Information Systems, 5(2):248-261, 2003.

[4922] Xiong, H. and He, X. and Ding, C. and Zhang, Y. and Kumar, V. and Holbrook, S. R. Identification of Functional Modules in Protein Complexes via Hyperclique Pattern Discovery. Proc. of the Pacific Symposium on Biocomputing, (PSB 2005), Maui, 2005.

[4923] Xiong, H. and Shekhar, S. and Tan, P. N. and Kumar, V. Exploiting a Support-based Upper Bound of Pearson's Correlation Coefficient for Efficiently Identifying Strongly Correlated Pairs. KDD04, pages 334-343, Seattle, WA, 2004.

[4924] Xiong, H. and Steinbach, M. and Tan, P. N. and Kumar, V. HICAP: Hierarchial Clustering with Pattern Preservation. SDM04, pages 279--290, Orlando, FL, 2004.

[4925] Xiong, H. and Tan, P. N. and Kumar, V. Mining Strong Affinity Association Patterns in Data Sets with Skewed Support Distribution. ICDM03, pages 387--394, Melbourne, FL, 2003.

[4926] Yan, X. and Han, J. gSpan: Graph-based Substructure Pattern Mining. ICDM02, pages 721--724, Maebashi City, Japan, 2002.

[4927] Yang, C. and Fayyad, U. M. and Bradley, P. S. Efficient discovery of error-tolerant frequent itemsets in high dimensions. KDD01, pages 194--203, San Francisco, CA, 2001.

[4928] Zadrozny, B. and Langford, J. C. and Abe, N. Cost-Sensitive Learning by Cost-Proportionate Example Weighting. ICDM03, pages 435--442, Melbourne, FL, 2003.

[4929] Zaki, M. J. Efficiently mining frequent trees in a forest. KDD02, pages 71--80, Edmonton, Canada, 2002.

[4930] Zaki, M. J. Generating Non-Redundant Association Rules. KDD00, pages 34--43, Boston, MA, 2000.

[4931] Zaki, M. J. Parallel and Distributed Association Mining: A Survey. IEEE Concurrency, special issue on Parallel Mechanisms for Data Mining, 7(4):14--25, 1999.

[4932] Zaki, M. J. and Orihara, M. Theoretical foundations of association rules. DMKD98, Seattle, WA, 1998.

[4933] Zaki, M. J. and Parthasarathy, S. and Ogihara, M. and Li, W. New Algorithms for Fast Discovery of Association Rules. KDD97, pages 283--286, Newport Beach, CA, 1997.

[4934] Zhang, H. and Padmanabhan, B. and Tuzhilin, A. On the Discovery of Significant Statistical Quantitative Rules. KDD04, pages 374--383, Seattle, WA, 2004.

[4935] Zhang, Z. and Lu, Y. and Zhang, B. An Effective Partioning-Combining Algorithm for Discovering Quantitative Association Rules. PAKDD97, Singapore, 1997.

[4936] Data Mining for Scientific and Engineering Applications. Kluwer Academic Publishers, 2001.

[4937] "C. Clifton and M. Kantarcioglu and J. Vaidya. Defining privacy for data mining. National Science Foundation Workshop on Next Generation Data Mining, pages 126--133, Baltimore, MD, 2002.

[4938] Large-Scale Parallel Data Mining. Springer, 2002.

[4939] Rakesh Agrawal and Ramakrishnan Srikant. Privacy-preserving data mining. SIGMOD00, pages 439--450, Dallas, Texas, 2000. ACM Press.

[4940] Mark S. Aldenderfer and Roger K. Blashfield. Cluster Analysis. Sage Publications, Los Angeles, 1985.

[4941] Michael R. Anderberg. Cluster Analysis for Applications. Academic Press, New York, 1973.

[4510] Andrews, R. and Diederich, J. and Tickle, A. A Survey and Critique of Techniques For Extracting Rules From Trained Artificial Neural Networks. Knowledge Based Systems, 8(6):373--389, 1995.

[4942] Phipps Arabie and Lawrence Hubert and G. De Soete. An overview of combinatorial data analysis. In P. Arabie and L. Hubert and G. De Soete, editors, Clustering and Classification, pages 188--217. World Scientific, Singapore, 1996.

[4943] G. Ball and D. Hall. A Clustering Technique for Summarizing Multivariate Data. Behavior Science, 12:153--155, 1967.

[4944] A. Banerjee and S. Merugu and I. S. Dhillon and J. Ghosh. Clustering with Bregman Divergences. In Michael W. Berry and Umeshwar Dayal and Chandrika Kamath and David Skillicorn, editors, SDM04, pages 234--245, Lake Buena Vista, FL, 2004.

[4945] Hans Hermann Bock and Edwin Diday. Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data (Studies in Classification, Data Analysis, and Knowledge Organization). Springer-Verlag Telos, 2000.

[4946] Ingwer Borg and Patrick Groenen. Modern Multidimensional Scaling---Theory and Applications. Springer-Verlag, 1997.

[4947] William G. Cochran. Sampling Techniques. John Wiley & Sons, 3rd edition, 1977.

[4948] James W. Demmel. Applied Numerical Linear Algebra. Society for Industrial & Applied Mathematics, 1997.

[4949] Pedro Domingos and Geoff Hulten. Mining high-speed data streams. KDD00, pages 71--80, Boston, Massachusetts, 2000. ACM Press.

[4950] Gaohua Gu, Feifang Hu and Huan Liu. Sampling and Its Application in Data Mining: A Survey. Technical report, TRA6/00, National University of Singapore, Singapore, 2000.

[4951] C. Giannella and J. Han and J. Pei and X. Yan and P. S. Yu. Mining Frequent Patterns in Data Streams at Multiple Time Granularities. In H. Kargupta and A. Joshi and K. Sivakumar and Y. Yesha, editors, Next Generation Data Mining, pages 191-212. AAAI/MIT, 2003.

[4952] D. J. Hand. Statistics and the Theory of Measurement. Journal of the Royal Statistical Society: Series A (Statistics in Society), 159(3):445-492, 1996.

[4953] Hillol Kargupta and Souptik Datta and Qi Wang and Krishnamoorthy Sivakumar. On the Privacy Preserving Properties of Random Data Perturbation Techniques. ICDM03, pages 99-106, Melbourne, Florida, 2003. IEEE Computer Society.

[4954] Daniel Kifer and Shai Ben-David and Johannes Gehrke. Detecting Change in Data Streams. VLDB04, pages 180-191, Toronto, Canada, 2004. Morgan Kaufmann.

[4955] David Krantz and R. Duncan Luce and Patrick Suppes and Amos Tversky. Foundations of Measurements: Volume 1: Additive and polynomial representations. Academic Press, New York, 1971.

[4956] Martin H. C. Law and Nan Zhang and Anil K. Jain. Nonlinear Manifold Learning for Data Streams.In Michael W. Berry and Umeshwar Dayal and Chandrika Kamath and David Skillicorn, editors, SDM04, Lake Buena Vista, Florida, 2004. SIAM.

[4957] B. W. Lindgren. Statistical Theory. CRC Press, 1993.

[4958] R. Duncan Luce and David Krantz and Patrick Suppes and Amos Tversky. Foundations of Measurements: Volume 3: Representation, Axiomatization, and Invariance. Academic Press, New York, 1990.

[4959] F. Olken and D. Rotem. Random Sampling from Databases---A Survey. Statistics & Computing, 5(1):25--42, 1995.

[4960] Jason Osborne. Notes on the Use of Data Transformations. Practical Assessment, Research & Evaluation, 28(6), 2002.

[4961] Christopher R. Palmer and Christos Faloutsos. Density biased sampling: An improved method for data mining and clustering. ACM SIGMOD Record, 29(2):82--92, 2000.

[4962] Spiros Papadimitriou and Anthony Brockwell and Christos Faloutsos. Adaptive, unsupervised stream mining. VLDB Journal, 13(3):222-239, 2004.

[4963] Foster J. Provost and David Jensen and Tim Oates. Efficient Progressive Sampling. KDD99, pages 23--32, 1999.

[4964] Stanley Smith Stevens. Measurement. In Gary Michael Maranell, editors, Scaling: A Sourcebook for Behavioral Scientists, pages 22--41. Aldine Publishing Co., Chicago, 1974.

[4965] Stanley Smith Stevens. On the Theory of Scales of Measurement. Science, 103(2684):677--680, 1946.

[4966] Patrick Suppes and David Krantz and R. Duncan Luce and Amos Tversky. Foundations of Measurements: Volume 2: Geometrical, Threshold, and Probabilistic Representations. Academic Press, New York, 1989.

[4967] Hannu Toivonen. Sampling Large Databases for Association Rules. In T. M. Vijayaraman and Alejandro P. Buchmann and C. Mohan and Nandlal L. Sarda, editors, VLDB96, pages 134--145, 1996. Morgan Kaufman.

[4968] John W. Tukey. On the Comparative Anatomy of Transformations. Annals of Mathematical Statistics, 28(3):602--632, 1957.

[4969] Vassilios S. Verykios and Elisa Bertino and Igor Nai Fovino and Loredana Parasiliti Provenza and Yucel Saygin and Yannis Theodoridis. State-of-the-art in privacy preserving data mining. SIGMOD Record, 33(1):50--57, 2004.

[4970] Richard Y. Wang and Mostapha Ziad and Yang W. Lee and Y. Richard Wang. Data Quality of The Kluwer International Series on Advances in Database Systems, Volume 23. Kluwer Academic Publishers, 2001.

[4971] Mohammed Javeed Zaki and Srinivasan Parthasarathy and Wei Li and Mitsunori Ogihara. Evaluation of Sampling for Data Mining of Association Rules. Technical report, TR617, Rensselaer Polytechnic Institute, 1996.

[4972] Feature Extraction, Construction and Selection: A Data Mining Perspective of Kluwer International Series in Engineering and Computer Science, 453. Kluwer Academic Publishers, 1998.

[4973] MIT Total Data Quality Management Program. web.mit.edu/tdqm/www/index.shtml, 2003.

[4974] Mihael Ankerst and Markus M. Breunig and Hans-Peter Kriegel and Jörg Sander. OPTICS: Ordering Points To Identify the Clustering Structure. In Alex Delis and Christos Faloutsos and Shahram Ghandeharizadeh, editors, SIGMOD99, pages 49--60, Philadelphia, Pennsylvania, 1999. ACM Press.

[4975] Daniel Barbará. Requirements for clustering data streams. SIGKDD Explorations Newsletter, 3(2):23--27, 2002.

[4976] Pavel Berkhin. Survey Of Clustering Data Mining Techniques. Technical report, Accrue Software, San Jose, CA, 2002.

[4977] J. Bilmes. A Gentle Tutorial on the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models. Technical report, ICSI-TR-97-021, University of California at Berkeley, 1997.

[4978] C. M. Bishop and M. Svensen and C. K. I. Williams. GTM: A principled alternative to the self-organizing map. In C. von der Malsburg and W. von Seelen and J. C. Vorbruggen and B. Sendhoff, editors, Artificial Neural Networks---ICANN96. Intl. Conf, Proc., pages 165-170. Springer-Verlag, Berlin, Germany, 1996.

[4979] Avrim Blum and Pat Langley. Selection of Relevant Features and Examples in Machine Learning. Artificial Intelligence, 97(1--2):245--271, 1997.

[4980] Daniel Boley. Principal Direction Divisive Partitioning. Data Mining and Knowledge Discovery, 2(4):325-344, 1998.

[4981] Paul S. Bradley and Usama M. Fayyad. Refining Initial Points for K-Means Clustering. In Jude W. Shavlik, editors, ICML98, pages 91--99, Madison, WI, 1998. Morgan Kaufmann Publishers Inc.

[4982] Paul S. Bradley and Usama M. Fayyad and Cory Reina. Scaling Clustering Algorithms to Large Databases. In Rakesh Agrawal and Paul Stolorz and Gregory Piatetsky-Shapiro, editors, KDD98, pages 9--15, New York City, 1998. AAAI Press.

[4983] Peter Cheeseman and James Kelly and Matthew Self and John Stutz and Will Taylor and Don Freeman. AutoClass: a Bayesian classification system. Readings in knowledge acquisition and learning: automating the construction and improvement of expert systems, pages 431--441. Morgan Kaufmann Publishers Inc., 1993.

[4984] James Dougherty and Ron Kohavi and Mehran Sahami. Supervised and Unsupervised Discretization of Continuous Features. ICML95, pages 194--202, 1995.

[4985] Duda, Robert O. and Hart, Peter E. and Stork, David G. Pattern Classification. John Wiley & Sons, Inc., New York, Second edition, 2001.

[4986] Tapio Elomaa and Juho Rousu. General and Efficient Multisplitting of Numerical Attributes. Machine Learning, 36(3):201--244, 1999.

[4987] Levent Ertöz and Michael Steinbach and Vipin Kumar. A New Shared Nearest Neighbor Clustering Algorithm and its Applications. Workshop on Clustering High Dimensional Data and its Applications, Proc. of Text Mine'01, First SIAM Intl. Conf. on Data Mining, Chicago, IL, USA, 2001.

[4988] Levent Ertöz and Michael Steinbach and Vipin Kumar. Finding Clusters of Different Sizes, Shapes, and Densities in Noisy, High Dimensional Data. SDM03, San Francisco, 2003. SIAM.

[4989] Martin Ester and Hans-Peter Kriegel and Jörg Sander and Michael Wimmer and Xiaowei Xu. Incremental Clustering for Mining in a Data Warehousing Environment. In Ashish Gupta and Oded Shmueli and Jennifer Widom, editors, VLDB98, pages 323--333, New York City, 1998. Morgan Kaufmann.

[4990] Martin Ester and Hans-Peter Kriegel and Jorg Sander and Xiaowei Xu. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Evangelos Simoudi and Jiawei Han and Usama M. Fayyad, editors, KDD96, pages 226--231, Portland, Oregon, 1996. AAAI Press.

[4991] Brian S. Everitt and Sabine Landau and Morven Leese. Cluster Analysis. Arnold Publishers, London, Fourth edition, 2001.

[4992] U. M. Fayyad and K. B. Irani. Multi-interval discretization of continuousvalued attributes for classification learning. Proc. 13th Int. Joint Conf. on Artificial Intelligence, pages 1022--1027, 1993. Morgan Kaufman.

[4993] Douglas Fisher. Iterative Optimization and Simplification of Hierarchical Clusterings. Journal of Artificial Intelligence Research, 4:147--179, 1996.

[4994] Douglas Fisher and Pat Langley. Conceptual clustering and its relation to numerical taxonomy. Artificial Intelligence and Statistics, :77--116, 1986.

[4995] Chris Fraley and Adrian E. Raftery. How Many Clusters? Which Clustering Method? Answers Via Model-Based Cluster Analysis. The Computer Journal, 41(8):578--588, 1998.

[4996] Venkatesh Ganti and Johannes Gehrke and Raghu Ramakrishnan. CACTUS--Clustering Categorical Data Using Summaries. KDD99, pages 73--83, 1999. ACM Press.

[4997] Allen Gersho and Robert M. Gray. Vector Quantization and Signal Compression, volume 159 of Kluwer International Series in Engineering and Computer Science. Kluwer Academic Publishers, 1992.

[4998] Joydeep Ghosh. Scalable Clustering Methods for Data Mining. In Nong Ye, editors, Handbook of Data Mining, pages 247--277. Lawrence Ealbaum Assoc, 2003.

[4999] David Gibson and Jon M. Kleinberg and Prabhakar Raghavan. Clustering Categorical Data: An Approach Based on Dynamical Systems. VLDB Journal, 8(3--4):222--236, 2000.

[5000] K. C. Gowda and G. Krishna. Agglomerative Clustering Using the Concept of Mutual Nearest Neighborhood. Pattern Recognition, 10(2):105--112, 1978.

[5001] Sudipto Guha and Adam Meyerson and Nina Mishra and Rajeev Motwani and Liadan O'Callaghan. Clustering Data Streams: Theory and Practice. IEEE Transactions on Knowledge and Data Engineering, 15(3):515--528, 2003.

[5002] Sudipto Guha and Rajeev Rastogi and Kyuseok Shim. CURE: An Efficient Clustering Algorithm for Large Databases. In Laura M. Haas and Ashutosh Tiwary, editors, SIGMOD98, pages 73--84, 1998. ACM Press.

[5003] Sudipto Guha and Rajeev Rastogi and Kyuseok Shim. ROCK: A Robust Clustering Algorithm for Categorical Attributes. In Masaru Kitsuregawa and Leszek Maciaszek and Mike Papazoglou and Calton Pu, editors, ICDE99, pages 512--521, 1999. IEEE Computer Society.

[5004] Maria Halkidi and Yannis Batistakis and Michalis Vazirgiannis. Cluster validity methods: part I. SIGMOD Record (ACM Special Interest Group on Management of Data), 31(2):40--45, 2002.

[5005] Maria Halkidi and Yannis Batistakis and Michalis Vazirgiannis. Clustering validity checking methods: part II. SIGMOD Record (ACM Special Interest Group on Management of Data), 31(3):19--27, 2002.

[5006] Greg Hamerly and Charles Elkan. Alternatives to the k-means algorithm that find better clusterings. CIKM02, pages 600--607, McLean, Virginia, 2002. ACM Press.

[5007] Jiawei Han and Micheline Kamber and Anthony Tung. Spatial Clustering Methods in Data Mining: A review. In Harvey J. Miller and Jiawei Han, editors, Geographic Data Mining and Knowledge Discovery, pages 188--217. Taylor and Francis, London, 2001.

[5008] John Hartigan. Clustering Algorithms. Wiley, New York, 1975.

[5009] Alexander Hinneburg and Daniel A. Keim. Optimal Grid-Clustering: Towards Breaking the Curse of Dimensionality in High-Dimensional Clustering. In M. P. Atkinson and M. E. Orlowska and P. Valduriez and S. B. Zdonik and M. L. Brodie, editors, VLDB99, pages 506--517, Edinburgh, Scotland, UK, 1999. Morgan Kaufmann.

[5010] Alexander Hinneburg and Daniel. A. Keim. An Efficient Approach to Clustering in Large Multimedia Databases with Noise. In Rakesh Agrawal and Paul Stolorz, editors, KDD98, pages 58--65, New York City, 1998. AAAI Press.

[5011] F. Hussain and H. Liu and C. L. Tan and M. Dash. TRC6/99: Discretization: an enabling technique. Technical report, National University of Singapore, Singapore, 1999.

[5012] Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data of Prentice Hall Advanced Reference Series. Prentice Hall, 1988. Book available online at http://www.cse.msu.edu/ : jain/Clustering_Jain_Dubes.pdf.

[5013] Anil K. Jain and M. Narasimha Murty and Patrick J. Flynn. Data clustering: A review. ACM Computing Surveys, 31(3):264--323, 1999.

[5014] Nicolas Jardine and Robin Sibson. Mathematical Taxonomy. Wiley, New York, 1971.

[5015] R. A. Jarvis and E. A. Patrick. Clustering Using a Similarity Measure Based on Shared Nearest Neighbors. IEEE Transactions on Computers, C-22(11):1025-1034, 1973.

[5016] I. T. Jolliffe. Principal Component Analysis. Springer Verlag, 2nd edition, 2002.

[5017] Istvan Jonyer and Diane J. Cook and Lawrence B. Holder. Graph-based hierarchical conceptual clustering. Journal of Machine Learning Research, 2:19--43, 2002.

[5018] Karin Kailing and Hans-Peter Kriegel and Peer Kröger. Density-Connected Subspace Clustering for High-Dimensional Data. In Michael W. Berry and Umeshwar Dayal and Chandrika Kamath and David B. Skillicorn, editors, SDM04, pages 428--439, Lake Buena Vista, Florida, 2004. SIAM.

[5019] George Karypis and Eui-Hong Han and Vipin Kumar. CHAMELEON: A Hierarchical Clustering Algorithm Using Dynamic Modeling. IEEE Computer, 32(8):68--75, 1999.

[5020] George Karypis and Eui-Hong Han and Vipin Kumar. Multilevel Refinement for Hierarchical Clustering. Technical report, TR 99-020, University of Minnesota, Minneapolis, MN, 1999.

[5021] George Karypis and Vipin Kumar. Multilevel k-way Partitioning Scheme for Irregular Graphs. Journal of Parallel and Distributed Computing, 48(1):96-129, 1998.

[5022] Leonard Kaufman and Peter J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster Analysis of Wiley Series in Probability and Statistics. John Wiley and Sons, New York, 1990.

[5023] Jon M. Kleinberg. An Impossibility Theorem for Clustering. Proc. of the 16th Annual Conf. on Neural Information Processing Systems, 2002.

[5024] Ron Kohavi and George H. John. Wrappers for Feature Subset Selection. Artificial Intelligence, 97(1--2):273--324, 1997.

[5025] Teuvo Kohonen and Thomas S. Huang and Manfred R. Schroeder. Self-Organizing Maps. Springer-Verlag, 2000.

[5026] Joseph B. Kruskal and Eric M. Uslaner. Multidimensional Scaling. Sage Publications, 1978.

[5027] Bjornar Larsen and Chinatsu Aone. Fast and Effective Text Mining Using Linear-Time Document Clustering. KDD99, pages 16--22, San Diego, California, 1999. ACM Press.

[5028] H. Liu and H. Motoda and L. Yu. Feature Extraction, Selection, and Construction. In Nong Ye, editors, The Handbook of Data Mining, pages 22--41. Lawrence Erlbaum Associates, Inc., Mahwah, NJ, 2003.

[5029] Huan Liu and Hiroshi Motoda. Feature Selection for Knowledge Discovery and Data Mining of Kluwer International Series in Engineering and Computer Science, 454. Kluwer Academic Publishers, 1998.

[5030] J. MacQueen. Some methods for classification and analysis of multivariate observations. In Le Cam, L. M. and Neyman, J., editors, Proc. of the 5th Berkeley Symp. on Mathematical Statistics and Probability, pages 281--297, 1967. University of California Press.

[5031] Michalski, R. S. and Stepp, R. E. Automated Construction of Classifications: Conceptual Clustering Versus Numerical Taxonomy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 5(4):396--409, 1983.

[5032] Glen W. Milligan. Clustering Validation: Results and Implications for Applied Analyses. In P. Arabie and L. Hubert and G. De Soete, editors, Clustering and Classification, pages 345--375. World Scientific, Singapore, 1996.

[5033] Boris Mirkin. Mathematical Classification and Clustering, volume 11 of Nonconvex Optimization and Its Applications. Kluwer Academic Publishers, 1996.

[5034] Nina Mishra and Dana Ron and Ram Swaminathan. A New Conceptual Clustering Framework. Machine Learning Journal, 56(1--3):115--151, 2004.

[5035] Luis Carlos Molina and Lluis Belanche and Angela Nebot. Feature Selection Algorithms: A Survey and Experimental Evaluation. ICDM02, 2002.

[5036] Fionn Murtagh. Clustering massive data sets. In J. Abello and P. M. Pardalos and M. G. C. Reisende, editors, Handbook of Massive Data Sets. Kluwer, 2000.

[5037] Fionn Murtagh. Multidimensional Clustering Algorithms. Physica-Verlag, Heidelberg and Vienna, 1985.

[5038] Harsha Nagesh and Sanjay Goil and Alok Choudhary. Parallel Algorithms for Clustering High-Dimensional Large-Scale Datasets. In Robert L. Grossman and Chandrika Kamath and Philip Kegelmeyer and Vipin Kumar and Raju Namburu, editors, Data Mining for Scientific and Engineering Applications, pages 335--356. Kluwer Academic Publishers, Dordrecht, Netherlands, 2001.

[5039] Raymond T. Ng and Jiawei Han. CLARANS: A Method for Clustering Objects for Spatial Data Mining. IEEE Transactions on Knowledge and Data Engineering, 14(5):1003--1016, 2002.

[5040] Dan Pelleg and Andrew W. Moore. X -means: Extending K -means with Efficient Estimation of the Number of Clusters. ICML00, pages 727--734, 2000. Morgan Kaufmann, San Francisco, CA.

[5041] Markus Peters and Mohammed J. Zaki. CLICKS: Clustering Categorical Data using K-partite Maximal Cliques. ICDE05, Tokyo, Japan, 2005.

[5042] Thomas C. Redman. Data Quality: The Field Guide. Digital Press, 2001.

[5043] Charles Romesburg. Cluster Analysis for Researchers. Life Time Learning, Belmont, CA, 1984.

[5044] J. Sander and M. Ester and H.-P. Kriegel and X. Xu. Density-Based Clustering in Spatial Databases: The Algorithm GDBSCAN and its Applications. Data Mining and Knowledge Discovery, 2(2):169--194, 1998.

[5045] Sergio M. Savaresi and Daniel Boley. A comparative analysis on the bisecting K-means and the PDDP clustering algorithms. Intelligent Data Analysis, 8(4):345-362, 2004.

[5046] Erich Schikuta and Martin Erhart. The BANG-Clustering System: Grid-Based Data Analysis. In Xiaohui Liu and Paul R. Cohen and Michael R. Berthold, editors, Advances in Intelligent Data Analysis, Reasoning about Data, Second Intl. Symposium, IDA-97, London in Lecture Notes in Computer Science, pages 513--524, 1997. Springer.

[5047] Gholamhosein Sheikholeslami and Surojit Chatterjee and Aidong Zhang. Wavecluster: A multi-resolution clustering approach for very large spatial databases. In Ashish Gupta and Oded Shmueli and Jennifer Widom, editors, VLDB98, pages 428--439, New York City, 1998. Morgan Kaufmann.

[5048] Sneath, Peter H. A. and Robert R. Sokal. Numerical Taxonomy. Freeman, San Francisco, 1971.

[5049] Helmuth Späth. Cluster Analysis Algorithms for Data Reduction and Classification of Objects, volume 4 of Computers and Their Application. Ellis Horwood Publishers, Chichester, 1980. ISBN 0-85312-141-9.

[5050] Ramakrishnan Srikant and Rakesh Agrawal. Mining Quantitative Association Rules in Large Relational Tables. In H. V. Jagadish and Inderpal Singh Mumick, editors, SIGMOD96, pages 1--12, Montreal, Quebec, Canada, 1996.

[5051] Michael Steinbach and George Karypis and Vipin Kumar. A Comparison of Document Clustering Techniques. Proc. of KDD Workshop on Text Mining, Proc. of the 6th Intl. Conf. on Knowledge Discovery and Data Mining, Boston, MA, 2000.

[5052] Robert E. Stepp and Ryszard S. Michalski. Conceptual clustering of structured objects: A goal-oriented approach. Artificial Intelligence, 28(1):43--69, 1986.

[5053] Alexander Strehl and Joydeep Ghosh. A Scalable Approach to Balanced, High-dimensional Clustering of Market-Baskets. Proc. of the 7th Intl. Conf. on High Performance Computing (HiPC 2000) in Lecture Notes in Computer Science, pages 525--536, Bangalore, India, 2000. Springer.

[5054] Charles T. Zahn. Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters. IEEE Transactions on Computers, C-20(1):68-86, 1971.

[5055] Tian Zhang and Raghu Ramakrishnan and Miron Livny. BIRCH: an efficient data clustering method for very large databases. In H. V. Jagadish and Inderpal Singh Mumick, editors, SIGMOD96, pages 103--114, Montreal, Quebec, Canada, 1996. ACM Press.

[5056] CLUTO 2.1.1: Software for Clustering High-Dimensional Datasets. /www.cs.umn.edu/ : karypis, 2003.

[4629] Agrawal, R. and Imielinski, T. and Swami, A. Database mining: A performance perspective. IEEE Transactions on Knowledge and Data Engineering, 5:914--925, 1993.

[5057] P. S. Bradley and U. M. Fayyad and C. Reina. Scaling EM (Expectation Maximization) Clustering to Large Databases. Technical report, MSR-TR-98-35, Microsoft Research, 1999.

[5058] D. A. Burn. Designing Effective Statistical Graphs. In C. R. Rao, editors, Handbook of Statistics 9. Elsevier/North-Holland, Amsterdam, The Netherlands, 1993.

[5059] Inderjit S. Dhillon and Yuqiang Guan and J. Kogan. Iterative Clustering of High Dimensional Text Data Augmented by Local Search. ICDM02, pages 131-138, 2002. IEEE Computer Society.

[5060] Inderjit S. Dhillon and Dharmendra S. Modha. Concept Decompositions for Large Sparse Text Data Using Clustering. Machine Learning, 42(1/2):143-175, 2001.

[5061] Michael Friendly. Gallery of Data Visualization. http://www.math.yorku.ca/SCS/Gallery/, 2005.

[5062] Eui-Hong Han and George Karypis and Vipin Kumar and Bamshad Mobasher. Hypergraph Based Clustering in High-Dimensional Data Sets: A Summary of Results. IEEE Data Eng. Bulletin, 21(1):15-22, 1998.

[5063] Konstantinos Kalpakis and Dhiral Gada and Vasundhara Puttagunta. Distance Measures for Effective Clustering of ARIMA Time-Series. ICDM01, pages 273-280, 2001. IEEE Computer Society.

[5064] Eamonn J. Keogh and Michael J. Pazzani. Scaling up dynamic time warping for datamining applications. Proc. of the 10th Intl. Conf. on Knowledge Discovery and Data Mining, pages 285-289, 2000.

[5065] Robert Spence. Information Visualization. ACM Press, New York, 2000.

[5066] Michael Steinbach and Pang-Ning Tan and Vipin Kumar and Steven Klooster and Christopher Potter. Discovery of climate indices using clustering. KDD '03: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 446--455, New York, NY, USA, 2003. ACM Press.

[5067] Edward R. Tufte. The Visual Display of Quantitative Information. Graphics Press, Cheshire, CT, 1986.

[5068] John W. Tukey. Exploratory data analysis. Addison-Wesley, 1977.

[5069] Velleman, Paul and Hoaglin, David. The ABC's of EDA: Applications, Basics, and Computing of Exploratory Data Analysis. Duxbury, 1981.

[5070] Bin Zhang and Meichun Hsu and Umeshwar Dayal. K-Harmonic Means---A Data Clustering Algorithm. Technical report, HPL-1999-124, Hewlett Packard Laboratories, 1999.

[5071] Ying Zhao and George Karypis. Empirical and theoretical comparisons of selected criterion functions for document clustering. Machine Learning, 55(3):311--331, 2004.

[5072] Information Visualization in Data Mining and Knowledge Discovery. Morgan Kaufmann Publishers, San Francisco, CA, 2001.

[5073] Mathematica 5.1. Wolfram Research, Inc.. http://www.wolfram.com/, 2005.

[5074] MATLAB 7.0. The MathWorks, Inc.. http://www.mathworks.com, 2005.

[5075] Microsoft Excel 2003. Microsoft, Inc.. http://www.microsoft.com/, 2003.

[4651] Agarwal, R. C. and Shafer, J. C. Parallel Mining of Association Rules. IEEE Transactions on Knowledge and Data Engineering, 8(6):962--969, 1998.

[4652] Aggarwal, C. C. and Sun, Z. and Yu, P. S. Online Generation of Profile Association Rules. KDD98, pages 129--133, New York, NY, 1996.

[4653] Aggarwal, C. C. and Yu, P. S. Mining Associations with the Collective Strength Approach. IEEE Trans. on Knowledge and Data Engineering, 13(6):863--873, 2001.

[4654] Aggarwal, C. C. and Yu, P. S. Mining Large Itemsets for Association Rules. Data Engineering Bulletin, 21(1):23--31, 1998.

[4655] Agrawal, R. and Imielinski, T. and Swami, A. Mining association rules between sets of items in large databases. Proc. ACM SIGMOD Intl. Conf. Management of Data, pages 207--216, Washington, DC, 1993.

[4656] Agrawal, R. and Srikant, R. Mining Sequential Patterns. Proc. of Intl. Conf. on Data Engineering, pages 3--14, Taipei, Taiwan, 1995.

[4657] Aha, D. W. A study of instance-based algorithms for supervised learning tasks: mathematical, empirical, and psychological evaluations. PhD thesis, University of California, Irvine, 1990.

[4658] Ali, K. and Manganaris, S. and Srikant, R. Partial Classification using Association Rules. KDD97, pages 115--118, Newport Beach, CA, 1997.

[4659] Alsabti, K. and Ranka, S. and Singh, V. CLOUDS: A Decision Tree Classifier for Large Datasets. KDD98, pages 2--8, New York, NY, 1998.

[4660] Aumann, Y. and Lindell, Y. A Statistical Theory for Quantitative Association Rules. KDD99, pages 261--270, San Diego, CA, 1999.

[5076] E. F. Codd and S. B. Codd and C. T. Smalley. Providing OLAP (On-line Analytical Processing) to User- Analysts: An IT Mandate. White Paper, E.F. Codd and Associates, 1993.

[5077] Jim Gray and Surajit Chaudhuri and Adam Bosworth and Andrew Layman and Don Reichart and Murali Venkatrao and Frank Pellow and Hamid Pirahesh. Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals. Journal Data Mining and Knowledge Discovery, 1(1):29--53, 1997.

[5078] Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems. McGraw-Hill, 3rd edition, 2002.

[5079] Arie Shoshani. OLAP and statistical databases: similarities and differences. Proc. of the Sixteenth ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems, pages 185--196, 1997. ACM Press.

[5080] Zhong, N. and Yao, Y. Y. and Ohsuga, S. Peculiarity Oriented Multi-database Mining. PKDD99, pages 136--146, Prague, Czech Republic, 1999.

[5081] R: A language and environment for statistical computing and graphics. The R Project for Statistical Computing. http://www.r-project.org/, 2005.

[4679] Allwein, E. L. and Schapire, R. E. and Singer, Y. Reducing Multiclass to Binary: A Unifying Approach to Margin Classifiers. Journal of Machine Learning Research, 1:113--141, 2000.

[4680] Antonie, M-L. and Zaďane, O. R. Mining Positive and Negative Association Rules: An Approach for Confined Rules. PKDD04, pages 27--38, Pisa, Italy, 2004.

[5082] S-PLUS. Insightful Corporation. http://www.insightful.com, 2005.

[5083] SAS: Statistical Analysis System. SAS Institute Inc.. http://www.sas.com/, 2005.

[4683] Ayres, J. and Flannick, J. and Gehrke, J. and Yiu, T. Sequential Pattern mining using a bitmap representation. KDD02, pages 429-435, Edmonton, Canada, 2002.

[4684] Barbará, D. and Couto, J. and Jajodia, S. and Wu, N. ADAM: A Testbed for Exploring the Use of Data Mining in Intrusion Detection. SIGMOD Record, 30(4):15--24, 2001.

[4685] Bay, S. D. and Pazzani, M. Detecting Group Differences: Mining Contrast Sets. Data Mining and Knowledge Discovery, 5(3):213--246, 2001.

[4686] Bayardo, R. Efficiently Mining Long Patterns from Databases. SIGMOD98, pages 85--93, Seattle, WA, 1998.

[4687] Bayardo, R. and Agrawal, R. Mining the Most Interesting Rules. KDD99, pages 145--153, San Diego, CA, 1999.

[4688] Benjamini, Y. and Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal Royal Statistical Society B, 57(1):289--300, 1995.

[4689] Breslow, L. A. and Aha, D. W. Simplifying Decision Trees: A Survey. Knowledge Engineering Review, 12(1):1--40, 1997.

[5084] SPSS: Statistical Package for the Social Sciences. SPSS, Inc.. http://www.spss.com/, 2005.

[4691] Bennett, K. and Campbell, C. Support Vector Machines: Hype or Hallelujah. SIGKDD Explorations, 2(2):1--13, 2000.

[4692] Berry, M. J. A. and Linoff, G. Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management. Wiley Computer Publishing, 2nd edition, 2004.

[4693] Bishop, C. M. Neural Networks for Pattern Recognition. Oxford University Press, Oxford, U.K., 1995.

[4694] Bolton, R. J. and Hand, D. J. and Adams, N. M. Determining Hit Rate in Pattern Search. Proc. of the ESF Exploratory Workshop on Pattern Detection and Discovery in Data Mining, pages 36--48, London, UK, 2002.

[4695] Boulicaut, J-F. and Bykowski, A. and Jeudy, B. Towards the Tractable Discovery of Association Rules with Negations. Proc. of the 4th Intl. Conf on Flexible Query Answering Systems FQAS'00, pages 425--434, Warsaw, Poland, 2000.

[4696] Bradley, A. P. The use of the area under the ROC curve in the Evaluation of Machine Learning Algorithms. Pattern Recognition, 30(7):1145--1149, 1997.

[4697] Paul S. Bradley and Johannes Gehrke and Raghu Ramakrishnan and Ramakrishnan Srikant. Scaling mining algorithms to large databases. Communications of the ACM, 45(8):38-43, 2002.

[4698] Breiman, L. Bagging Predictors. Machine Learning, 24(2):123--140, 1996.

[4699] Breiman, L. Bias, Variance, and Arcing Classifiers. Technical report, 486, University of California, Berkeley, CA, 1996.

[4700] Breiman, L. Random Forests. Machine Learning, 45(1):5--32, 2001.

[4701] Breiman, L. and Friedman, J. H. and Olshen, R. and Stone, C. J. Classification and Regression Trees. Chapman & Hall, New York, 1984.

[4702] Brin, S. and Motwani, R. and Silverstein, C. Beyond market baskets: Generalizing association rules to correlations. Proc. ACM SIGMOD Intl. Conf. Management of Data, pages 265--276, Tucson, AZ, 1997.

[4703] Brin, S. and Motwani, R. and Ullman, J. and Tsur, S. Dynamic Itemset Counting and Implication Rules for market basket data. SIGMOD97, pages 255--264, Tucson, AZ, 1997.

[4704] Buntine, W. Learning classification trees. In Hand, D. J., editors, Artificial Intelligence Frontiers in Statistics, pages 182--201, 1993. Chapman & Hall, London.

[4705] Burges, C. J. C. A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 2(2):121--167, 1998.

[4706] Cai, C. H. and Fu, A. and Cheng, C. H. and Kwong, W. W. Mining Association Rules with Weighted Items. Proc. of IEEE Intl. Database Engineering and Applications Symp., pages 68--77, Cardiff, Wales, 1998.

[4707] Cant u' -Paz, E. and Kamath, C. Using evolutionary algorithms to induce oblique decision trees. Proc. of the Genetic and Evolutionary Computation Conf., pages 1053--1060, San Francisco, CA, 2000.

[4708] Chakrabarti, S. Mining the Web: Discovering Knowledge from Hypertext Data. Morgan Kaufmann, San Francisco, CA, 2003.

[4709] Chawla, N. V. and Bowyer, K. W. and Hall, L. O. and Kegelmeyer, W. P. SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16:321--357, 2002.

[4710] Chawla, N. V. and Japkowicz, N. and Kolcz, A. Editorial: Special Issue on Learning from Imbalanced Data Sets. SIGKDD Explorations, 6(1):1--6, 2004.

[4711] Chen, Q. and Dayal, U. and Hsu, M. A Distributed OLAP infrastructure for E-Commerce. Proc. of the 4th IFCIS Intl. Conf. on Cooperative Information Systems, pages 209--220, Edinburgh, Scotland, 1999.

[4712] Cheng, H. and Yan, X. and Han, J. IncSpan: incremental mining of sequential patterns in large database. KDD04, pages 527-532, Seattle, WA, 2004.

[4713] Cherkassky, V. and Mulier, F. Learning from Data: Concepts, Theory, and Methods. Wiley Interscience, 1998.

[4714] Cheung, D. C. and Lee, S. D. and Kao, B. A General Incremental Technique for Maintaining Discovered Association Rules. Proc. of the 5th Intl. Conf. on Database Systems for Advanced Applications, pages 185--194, Melbourne, Australia, 1997.

[4715] Clark, P. and Boswell, R. Rule Induction with CN2: Some Recent Improvements. Machine Learning: Proc. of the 5th European Conf. (EWSL-91), pages 151--163, 1991.

[4716] Clark, P. and Niblett, T. The CN2 Induction Algorithm. Machine Learning, 3(4):261--283, 1989.

[4717] Cohen, W. W. Fast Effective Rule Induction. ICML95, pages 115--123, Tahoe City, CA, 1995.

[4718] Cooley, R. and Tan, P. N. and Srivastava, J. Discovery of Interesting Usage Patterns from Web Data. In Spiliopoulou, M. and Masand, B., editors, Advances in Web Usage Analysis and User Profiling, pages 163--182. Lecture Notes in Computer Science, 2000.

[4719] Cost, S. and Salzberg, S. A Weighted Nearest Neighbor Algorithm for Learning with Symbolic Features. Machine Learning, 10:57--78, 1993.

[4720] Cover, T. M. and Hart, P. E. Nearest Neighbor Pattern Classification. Knowledge Based Systems, 8(6):373--389, 1995.

[4721] Cristianini, N. and Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, 2000.

[4722] Dietterich, T. G. Ensemble Methods in Machine Learning. First Intl. Workshop on Multiple Classifier Systems, Cagliari, Italy, 2000.

[4723] Dietterich, T. G. and Bakiri, G. Solving Multiclass Learning Problems via Error-Correcting Output Codes. Journal of Artificial Intelligence Research, 2:263--286, 1995.

[4724] Dokas, P. and Ertöz, L. and Kumar, V. and Lazarevic, A. and Srivastava, J. and Tan, P. N. Data Mining for Network Intrusion Detection. Proc. NSF Workshop on Next Generation Data Mining, Baltimore, MD, 2002.

[4725] Domingos, P. MetaCost: A General Method for Making Classifiers Cost-Sensitive. KDD99, pages 155--164, San Diego, CA, 1999.

[4726] Domingos, P. The RISE system: Conquering without separating. Proc. of the 6th IEEE Intl. Conf. on Tools with Artificial Intelligence, pages 704--707, New Orleans, LA, 1994.

[4727] Domingos, P. The Role of Occam's Razor in Knowledge Discovery. Data Mining and Knowledge Discovery, 3(4):409--425, 1999.

[4728] Domingos, P. and Pazzani, M. On the Optimality of the Simple Bayesian Classifier under Zero-One Loss. Machine Learning, 29(2-3):103--130, 1997.

[4729] Dong, G. and Li, J. Efficient Mining of Emerging Patterns: Discovering Trends and Differences. KDD99, pages 43--52, San Diego, CA, 1999.

[4730] Dong, G. and Li, J. Interestingness of discovered association rules in terms of neighborhood-based unexpectedness. PAKDD98, pages 72--86, Melbourne, Australia, 1998.

[4731] Drummond, C. and Holte, R. C. C4.5, Class imbalance, and Cost sensitivity: Why under-sampling beats over-sampling. ICML'2004 Workshop on Learning from Imbalanced Data Sets II, Washington, DC, 2003.

[4732] Duda, R. O. and Hart, P. E. and Stork, D. G. Pattern Classification. John Wiley & Sons, Inc., New York, 2nd edition, 2001.

[4733] DuMouchel, W. and Pregibon, D. Empirical Bayes Screening for Multi-Item Associations. KDD01, pages 67--76, San Francisco, CA, 2001.

[4734] Dunham, M. H. Data Mining: Introductory and Advanced Topics. Prentice Hall, 2002.

[4735] Dunkel, B. and Soparkar, N. Data Organization and Access for Efficient Data Mining. ICDE99, pages 522--529, Sydney, Australia, 1999.

[4736] Efron, B. and Tibshirani, R. Cross-validation and the Bootstrap: Estimating the Error Rate of a Prediction Rule. Technical report, Stanford University, 1995.

[4737] Elkan, C. The Foundations of Cost-Sensitive Learning. Proc. of the 17th Intl. Joint Conf. on Artificial Intelligence, pages 973--978, Seattle, WA, 2001.

[4738] Esposito, F. and Malerba, D. and Semeraro, G. A Comparative Analysis of Methods for Pruning Decision Trees. IEEE Trans. Pattern Analysis and Machine Intelligence, 19(5):476--491, 1997.

[4739] F u ¨ rnkranz, J. and Widmer, G. Incremental reduced error pruning. ICML94, pages 70--77, New Brunswick, NJ, 1994.

[4740] Fabris, C. C. and Freitas, A. A. Discovering surprising patterns by detecting occurrences of Simpson's paradox. Proc. of the 19th SGES Intl. Conf. on Knowledge-Based Systems and Applied Artificial Intelligence), pages 148--160, Cambridge, UK, 1999.

[4741] Fan, W. and Stolfo, S. J. and Zhang, J. and Chan, P. K. AdaCost: misclassification cost-sensitive boosting. ICML99, pages 97--105, Bled, Slovenia, 1999.

[4742] Usama M. Fayyad and Gregory Piatetsky-Shapiro and Padhraic Smyth. From Data Mining to Knowledge Discovery: An Overview. Advances in Knowledge Discovery and Data Mining, pages 1-34. AAAI Press, 1996.

[4743] Feng, L. and Lu, H. J. and Yu, J. X. and Han, J. Mining inter-transaction associations with templates. CIKM99, pages 225--233, Kansas City, Missouri, 1999.

[4744] Ferri, C. and Flach, P. and Hernandez-Orallo, J. Learning Decision Trees Using the Area Under the ROC Curve. ICML02, pages 139--146, Sydney, Australia, 2002.

[4745] Fisher, R. A. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7:179--188, 1936.

[4746] Freitas, A. A. Understanding the crucial differences between classification and discovery of association rules---a position paper. SIGKDD Explorations, 2(1):65--69, 2000.

[4747] Freund, Y. and Schapire, R. E. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119--139, 1997.

[4748] Friedman, J. H. Data Mining and Statistics: What's the Connection?. Unpublished. www-stat.stanford.edu/ : jhf/ftp/dm-stat.ps, 1997.

[4749] Friedman, J. H. and Fisher, N. I. Bump hunting in high-dimensional data. Statistics and Computing, 9(2):123--143, 1999.

[4750] Fukuda, T. and Morimoto, Y. and Morishita, S. and Tokuyama, T. Mining Optimized Association Rules for Numeric Attributes. PODS96, pages 182--191, Montreal, Canada, 1996.

[4751] Fukunaga, K. Introduction to Statistical Pattern Recognition. Academic Press, New York, 1990.

[4752] Garofalakis, M. N. and Rastogi, R. and Shim, K. SPIRIT: Sequential Pattern Mining with Regular Expression Constraints. VLDB99, pages 223--234, Edinburgh, Scotland, 1999.

[4753] Gehrke, J. and Ramakrishnan, R. and Ganti, V. RainForest---A Framework for Fast Decision Tree Construction of Large Datasets. Data Mining and Knowledge Discovery, 4(2/3):127--162, 2000.

[4754] Clark Glymour and David Madigan and Daryl Pregibon and Padhraic Smyth. Statistical Themes and Lessons for Data Mining. Data Mining and Knowledge Discovery, 1(1):11--28, 1997.

[4755] Robert L. Grossman and Mark F. Hornick and Gregor Meyer. Data mining standards initiatives. Communications of the ACM, 45(8):59-61, 2002.

[4756] Gunopulos, D. and Khardon, R. and Mannila, H. and Toivonen, H. Data Mining, Hypergraph Transversals, and Machine Learning. PODS97, pages 209--216, Tucson, AZ, 1997.

[4757] Han, E.-H. and Karypis, G. and Kumar, V. Min-Apriori: An Algorithm for Finding Association Rules in Data with Continuous Attributes. http://www.cs.umn.edu/han, 1997.

[4758] Han, E.-H. and Karypis, G. and Kumar, V. Scalable Parallel Data Mining for Association Rules. SIGMOD97, pages 277--288, Tucson, AZ, 1997.

[4759] Han, E.-H. and Karypis, G. and Kumar, V. Text Categorization Using Weight Adjusted k-Nearest Neighbor Classification. PAKDD01, Lyon, France, 2001.

[4760] Han, E.-H. and Karypis, G. and Kumar, V. and Mobasher, B. Clustering Based on Association Rule Hypergraphs. DMKD97, Tucson, AZ, 1997.

[4761] Han, J. and Fu, Y. Mining Multiple-Level Association Rules in Large Databases. IEEE Trans. on Knowledge and Data Engineering, 11(5):798--804, 1999.

[4762] Han, J. and Fu, Y. and Koperski, K. and Wang, W. and Zaďane, O. R. DMQL: A data mining query language for relational databases. DMKD96, Montreal, Canada, 1996.

[4763] Han, J. and Kamber, M. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, San Francisco, 2001.

[4764] Han, J. and Pei, J. and Yin, Y. Mining Frequent Patterns without Candidate Generation. Proc. ACM-SIGMOD Int. Conf. on Management of Data (SIGMOD'00), pages 1--12, Dallas, TX, 2000.

[4765] Jiawei Han and Russ B. Altman and Vipin Kumar and Heikki Mannila and Daryl Pregibon. Emerging scientific applications in data mining. Communications of the ACM, 45(8):54-58, 2002.

[4766] Hand, D. J. Data Mining: Statistics and More?. The American Statistician, 52(2):112--118, 1998.

[4767] Hand, D. J. and Mannila, H. and Smyth, P. Principles of Data Mining. MIT Press, 2001.

[4768] Hastie, T. and Tibshirani, R. Classification by pairwise coupling. Annals of Statistics, 26(2):451--471, 1998.

[4769] Hastie, T. and Tibshirani, R. and Friedman, J. H. The Elements of Statistical Learning: Data Mining, Inference, Prediction. Springer, New York, 2001.

[4770] Hearst, M. Trends & Controversies: Support Vector Machines. IEEE Intelligent Systems, 13(4):18--28, 1998.

[4771] Heath, D. and Kasif, S. and Salzberg, S. Induction of Oblique Decision Trees. Proc. of the 13th Intl. Joint Conf. on Artificial Intelligence, pages 1002--1007, Chambery, France, 1993.

[4772] Heckerman, D. Bayesian Networks for Data Mining. Data Mining and Knowledge Discovery, 1(1):79--119, 1997.

[4773] Hidber, C. Online Association Rule Mining. SIGMOD99, pages 145--156, Philadelphia, PA, 1999.

[4774] Hilderman, R. J. and Hamilton, H. J. Knowledge Discovery and Measures of Interest. Kluwer Academic Publishers, 2001.

[4775] Hipp, J. and Guntzer, U. and Nakhaeizadeh, G. Algorithms for Association Rule Mining---A General Survey. SigKDD Explorations, 2(1):58--64, 2000.

[4776] Hofmann, H. and Siebes, A. P. J. M. and Wilhelm, A. F. X. Visualizing Association Rules with Interactive Mosaic Plots. KDD00, pages 227--235, Boston, MA, 2000.

[4777] Holt, J. D. and Chung, S. M. Efficient Mining of Association Rules in Text Databases. CIKM99, pages 234--242, Kansas City, Missouri, 1999.

[4778] Holte, R. C. Very Simple Classification Rules Perform Well on Most Commonly Used Data sets. Machine Learning, 11:63--91, 1993.

[4779] Houtsma, M. and Swami, A. Set-oriented Mining for Association Rules in Relational Databases. ICDE95, pages 25--33, Taipei, Taiwan, 1995.

[4780] Huang, Y. and Shekhar, S. and Xiong, H. Discovering Co-location Patterns from Spatial Datasets: A General Approach. IEEE Trans. on Knowledge and Data Engineering, 16(12):1472--1485, 2004.

[4781] Imielinski, T. and Virmani, A. and Abdulghani, A. DataMine: Application Programming Interface and Query Language for Database Mining. KDD96, pages 256--262, Portland, Oregon, 1996.

[4782] Inokuchi, A. and Washio, T. and Motoda, H. An Apriori-based Algorithm for Mining Frequent Substructures from Graph Data. PKDD00, pages 13--23, Lyon, France, 2000.

[4783] Jain, A. K. and Duin, R. P. W. and Mao, J. Statistical Pattern Recognition: A Review. IEEE Tran. Patt. Anal. and Mach. Intellig., 22(1):4--37, 2000.

[4784] Japkowicz, N. The Class Imbalance Problem: Significance and Strategies. Proc. of the 2000 Intl. Conf. on Artificial Intelligence: Special Track on Inductive Learning, pages 111--117, Las Vegas, NV, 2000.

[4785] Jaroszewicz, S. and Simovici, D. Interestingness of Frequent Itemsets Using Bayesian Networks as Background Knowledge. KDD04, pages 178--186, Seattle, WA, 2004.

[4786] Jensen, D. and Cohen, P. R. Multiple Comparisons in Induction Algorithms. Machine Learning, 38(3):309--338, 2000.

[4787] Joshi, M. V. On Evaluating Performance of Classifiers for Rare Classes. ICDM02, Maebashi City, Japan, 2002.

[4788] Joshi, M. V. and Agarwal, R. C. and Kumar, V. Mining Needles in a Haystack: Classifying Rare Classes via Two-Phase Rule Induction. SIGMOD01, pages 91-102, Santa Barbara, CA, 2001.

[4789] Joshi, M. V. and Agarwal, R. C. and Kumar, V. Predicting rare classes: can boosting make any weak learner strong?. KDD02, pages 297-306, Edmonton, Canada, 2002.

[4790] Joshi, M. V. and Karypis, G. and Kumar, V. A Universal Formulation of Sequential Patterns. Proc. of the KDD'2001 workshop on Temporal Data Mining, San Francisco, CA, 2001.

[4791] Joshi, M. V. and Karypis, G. and Kumar, V. ScalParC: A New Scalable and Efficient Parallel Classification Algorithm for Mining Large Datasets. Proc. of 12th Intl. Parallel Processing Symp. (IPPS/SPDP), pages 573-579, Orlando, FL, 1998.

[4792] Joshi, M. V. and Kumar, V. CREDOS: Classification Using Ripple Down Structure (A Case for Rare Classes). SDM04, pages 321-332, Orlando, FL, 2004.

[4793] Kamber, M. and Shinghal, R. Evaluating the Interestingness of Characteristic Rules. KDD96, pages 263--266, Portland, Oregon, 1996.

[4794] Kantardzic, M. Data Mining: Concepts, Models, Methods, and Algorithms. Wiley-IEEE Press, Piscataway, NJ, 2003.

[4795] Kass, G. V. An Exploratory Technique for Investigating Large Quantities of Categorical Data. Applied Statistics, 29:119--127, 1980.

[4796] Kim, B. and Landgrebe, D. Hierarchical decision classifiers in high-dimensional and large class data. IEEE Trans. on Geoscience and Remote Sensing, 29(4):518--528, 1991.

[4797] Klemettinen, M. A Knowledge Discovery Methodology for Telecommunication Network Alarm Databases. PhD thesis, University of Helsinki, 1999.

[4798] Kohavi, R. A Study on Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. Proc. of the 15th Intl. Joint Conf. on Artificial Intelligence, pages 1137--1145, Montreal, Canada, 1995.

[4799] Kong, E. B. and Dietterich, T. G. Error-Correcting Output Coding Corrects Bias and Variance. ICML95, pages 313--321, Tahoe City, CA, 1995.

[4800] Kosters, W. A. and Marchiori, E. and Oerlemans, A. Mining Clusters with Association Rules. The 3rd Symp. on Intelligent Data Analysis (IDA99), pages 39--50, Amsterdam, 1999.

[4801] Kubat, M. and Matwin, S. Addressing the Curse of Imbalanced Training Sets: One Sided Selection. ICML97, pages 179--186, Nashville, TN, 1997.

[4802] Kulkarni, S. R. and Lugosi, G. and Venkatesh, S. S. Learning Pattern Classification---A Survey. IEEE Tran. Inf. Theory, 44(6):2178--2206, 1998.

[4803] Kumar, V. and Joshi, M. V. and Han, E.-H. and Tan, P. N. and Steinbach, M. High Performance Data Mining. High Performance Computing for Computational Science (VECPAR 2002), pages 111-125. Springer, 2002.

[4804] Kuok, C. M. and Fu, A. and Wong, M. H. Mining Fuzzy Association Rules in Databases. ACM SIGMOD Record, 27(1):41--46, 1998.

[4805] Kuramochi, M. and Karypis, G. Discovering Frequent Geometric Subgraphs. ICDM02, pages 258--265, Maebashi City, Japan, 2002.

[4806] Kuramochi, M. and Karypis, G. Frequent Subgraph Discovery. ICDM01, pages 313--320, San Jose, CA, 2001.

[4807] Diane Lambert. What Use is Statistics for Massive Data?. ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, pages 54-62, 2000.

[4808] Landeweerd, G. and Timmers, T. and Gersema, E. and Bins, M. and Halic, M. Binary tree versus single level tree classification of white blood cells. Pattern Recognition, 16:571--577, 1983.

[4809] Langley, P. and Iba, W. and Thompson, K. An analysis of Bayesian classifiers. Proc. of the 10th National Conf. on Artificial Intelligence, pages 223--228, 1992.

[4810] Lee, W. and Stolfo, S. J. and Mok, K. W. Adaptive Intrusion Detection: A Data Mining Approach. Artificial Intelligence Review, 14(6):533--567, 2000.

[4811] Lent, B. and Swami, A. and Widom, J. Clustering Association Rules. ICDE97, pages 220--231, Birmingham, U.K, 1997.

[4812] Lewis, D. D. Naive Bayes at Forty: The Independence Assumption in Information Retrieval. Proc. of the 10th European Conf. on Machine Learning (ECML 1998), pages 4--15, 1998.

[4813] Li, W. and Han, J. and Pei, J. CMAR: Accurate and Efficient Classification Based on Multiple Class-association Rules. ICDM01, pages 369--376, San Jose, CA, 2001.

[4814] Liu, B. and Hsu, W. and Chen, S. Using General Impressions to Analyze Discovered Classification Rules. KDD97, pages 31--36, Newport Beach, CA, 1997.

[4815] Liu, B. and Hsu, W. and Ma, Y. Integrating Classification and Association Rule Mining. KDD98, pages 80--86, New York, NY, 1998.

[4816] Liu, B. and Hsu, W. and Ma, Y. Mining association rules with multiple minimum supports. KDD99, pages 125--134, San Diego, CA, 1999.

[4817] Liu, B. and Hsu, W. and Ma, Y. Pruning and Summarizing the Discovered Associations. KDD99, pages 125--134, San Diego, CA, 1999.

[4818] Mangasarian, O. Data Mining via Support Vector Machines. Technical report, Technical Report 01-05, Data Mining Institute, 2001.

[4819] Mannila, H. and Toivonen, H. and Verkamo, A. I. Discovery of Frequent Episodes in Event Sequences. Data Mining and Knowledge Discovery, 1(3):259--289, 1997.

[4820] Marcus, A. and Maletic, J. I. and Lin, K.-I. Ordinal association rules for error identification in data sets. CIKM01, pages 589--591, Atlanta, GA, 2001.

[4821] Margineantu, D. D. and Dietterich, T. G. Learning Decision Trees for Loss Minimization in Multi-Class Problems.Technical report, 99-30-03, Oregon State University, 1999.

[4822] Megiddo, N. and Srikant, R. Discovering Predictive Association Rules. KDD98, pages 274--278, New York, 1998.

[4823] Mehta, M. and Agrawal, R. and Rissanen, J. SLIQ: A Fast Scalable Classifier for Data Mining. Proc. of the 5th Intl. Conf. on Extending Database Technology, pages 18--32, Avignon, France, 1996.

[4824] Meo, R. and Psaila, G. and Ceri, S. A New SQL-like Operator for Mining Association Rules. VLDB96, pages 122--133, Bombay, India, 1996.

[4825] Michalski, R. S. A theory and methodology of inductive learning. Artificial Intelligence, 20:111--116, 1983.

[4826] Michalski, R. S. and Mozetic, I. and Hong, J. and Lavrac, N. The Multi-Purpose Incremental Learning System AQ15 and Its Testing Application to Three Medical Domains. Proc. of 5th National Conf. on Artificial Intelligence, Orlando, 1986.

[4827] Michie, D. and Spiegelhalter, D. J. and Taylor, C. C. Machine Learning, Neural and Statistical Classification. Ellis Horwood, Upper Saddle River, NJ, 1994.

[4828] Miller, R. J. and Yang, Y. Association Rules over Interval Data. SIGMOD97, pages 452--461, Tucson, AZ, 1997.

[4829] Mingers, J. An empirical comparison of pruning methods for decision tree induction. Machine Learning, 4:227--243, 1989.

[4830] Mingers, J. Expert Systems---Rule Induction with Statistical Data. J Operational Research Society, 38:39--47, 1987.

[4831] Mitchell, T. Machine Learning. McGraw-Hill, Boston, MA, 1997.

[4832] Moret, B. M. E. Decision Trees and Diagrams. Computing Surveys, 14(4):593--623, 1982.

[4833] Morimoto, Y. and Fukuda, T. and Matsuzawa, H. and Tokuyama, T. and Yoda, K. Algorithms for mining association rules for binary segmentations of huge categorical databases. VLDB98, pages 380--391, New York, 1998.

[4834] Mosteller, F. Association and Estimation in Contingency Tables. Journal of the American Statistical Association, 63:1--28, 1968.

[4835] Mueller, A. Fast sequential and parallel algorithms for association rule mining: A comparison. Technical report, CS-TR-3515, University of Maryland, 1995.

[4836] Muggleton, S. Foundations of Inductive Logic Programming. Prentice Hall, Englewood Cliffs, NJ, 1995.

[4837] Murthy, S. K. Automatic Construction of Decision Trees from Data: A Multi-Disciplinary Survey. Data Mining and Knowledge Discovery, 2(4):345--389, 1998.

[4838] Murthy, S. K. and Kasif, S. and Salzberg, S. A system for induction of oblique decision trees. J of Artificial Intelligence Research, 2:1--33, 1994.

[4839] Ng, R. T. and Lakshmanan, L. V. S. and Han, J. and Pang, A. Exploratory Mining and Pruning Optimizations of Constrained Association Rules. SIGMOD98, pages 13--24, Seattle, WA, 1998.

[4840] Niblett, T. Constructing decision trees in noisy domains. Proc. of the 2nd European Working Session on Learning, pages 67--78, Bled, Yugoslavia, 1987.

[4841] Niblett, T. and Bratko, I. Learning Decision Rules in Noisy Domains. In Bramer, M., editors, Research and Development in Expert Systems III, Cambridge, 1986. Cambridge University Press.

[4842] Omiecinski, E. Alternative Interest Measures for Mining Associations in Databases. IEEE Trans. on Knowledge and Data Engineering, 15(1):57--69, 2003.

[4843] Ozden, B. and Ramaswamy, S. and Silberschatz, A. Cyclic Association Rules. DE98, pages 412--421, Orlando, FL, 1998.

[4844] Ozgur, A. and Tan, P. N. and Kumar, V. RBA: An Integrated Framework for Regression based on Association Rules. SDM04, pages 210--221, Orlando, FL, 2004.

[4845] Park, J. S. and Chen, M.-S. and Yu, P. S. An effective hash-based algorithm for mining association rules. SIGMOD Record, 25(2):175--186, 1995.

[4846] Parr Rud, O. Data Mining Cookbook: Modeling Data for Marketing, Risk and Customer Relationship Management. John Wiley & Sons, New York, NY, 2001.

[4847] Parthasarathy, S. and Coatney, M. Efficient Discovery of Common Substructures in Macromolecules. ICDM02, pages 362--369, Maebashi City, Japan, 2002.

[4848] Pasquier, N. and Bastide, Y. and Taouil, R. and Lakhal, L. Discovering frequent closed itemsets for association rules. Proc. of the 7th Intl. Conf. on Database Theory (ICDT'99), pages 398--416, Jerusalem, Israel, 1999.

[4849] Pattipati, K. R. and Alexandridis, M. G. Application of heuristic search and information theory to sequential fault diagnosis. IEEE Trans. on Systems, Man, and Cybernetics, 20(4):872--887, 1990.

[4850] Pei, J. and Han, J. and Lu, H. J. and Nishio, S. and Tang, S. H-Mine: Hyper-Structure Mining of Frequent Patterns in Large Databases. ICDM01, pages 441--448, San Jose, CA, 2001.

[4851] Pei, J. and Han, J. and Mortazavi-Asl, B. and Chen, Q. and Dayal, U. and Hsu, M. PrefixSpan: Mining Sequential Patterns efficiently by prefix-projected pattern growth. Proc of the 17th Intl. Conf. on Data Engineering, Heidelberg, Germany, 2001.

[4852] Pei, J. and Han, J. and Mortazavi-Asl, B. and Zhu, H. Mining Access Patterns Efficiently from Web Logs. PAKDD00, pages 396--407, Kyoto, Japan, 2000.

[4853] Piatetsky-Shapiro, G. Discovery, Analysis and Presentation of Strong Rules. In G. Piatetsky-Shapiro and W. Frawley, editors, Knowledge Discovery in Databases, pages 229--248. MIT Press, Cambridge, MA, 1991.

[4854] Potter, C. and Klooster, S. and Steinbach, M. and Tan, P. N. and Kumar, V. and Shekhar, S. and Carvalho, C. Understanding Global Teleconnections of Climate to Regional Model Estimates of Amazon Ecosystem Carbon Fluxes. Global Change Biology, 10(5):693--703, 2004.

[4855] Potter, C. and Klooster, S. and Steinbach, M. and Tan, P. N. and Kumar, V. and Shekhar, S. and Myneni, R. and Nemani, R. Global Teleconnections of Ocean Climate to Terrestrial Carbon Flux. J. Geophysical Research, 108(D17), 2003.

[4856] Provost, F. J. and Fawcett, T. Analysis and Visualization of Classifier Performance: Comparison under Imprecise Class and Cost Distributions. KDD97, pages 43--48, Newport Beach, CA, 1997.

[4857] Pyle, D. Business Modeling and Data Mining. Morgan Kaufmann, San Francisco, CA, 2003.

[4858] Quinlan, J. R. C4.5: Programs for Machine Learning. Morgan-Kaufmann Publishers, San Mateo, CA, 1993.

[4859] Quinlan, J. R. Discovering rules by induction from large collection of examples. In Michie, D., editors, Expert Systems in the Micro Electronic Age. Edinburgh University Press, Edinburgh, UK, 1979.

[4860] Quinlan, J. R. Simplifying Decision Trees. Intl. J. Man-Machine Studies, 27:221--234, 1987.

[4861] Quinlan, J. R. and Rivest, R. L. Inferring Decision Trees Using the Minimum Description Length Principle. Information and Computation, 80(3):227--248, 1989.

[4862] Naren Ramakrishnan and Ananth Grama. Data Mining: From Serendipity to Science---Guest Editors' Introduction. IEEE Computer, 32(8):34-37, 1999.

[4863] Ramkumar, G. D and Ranka, S. and Tsur, S. Weighted Association Rules: Model and Algorithm. http://www.cs.ucla.edu/czdemo/tsur/, 1997.

[4864] Ramoni, M. and Sebastiani, P. Robust Bayes classifiers. Artificial Intelligence, 125:209--226, 2001.

[4865] van Rijsbergen, C. J. Information Retrieval. Butterworth-Heinemann, Newton, MA, 1978.

[4866] Roiger, R. and Geatz, M. Data Mining: A Tutorial Based Primer. Addison-Wesley, 2002.

[4867] Safavian, S. R. and Landgrebe, D. A Survey of Decision Tree Classifier Methodology. IEEE Trans. Systems, Man and Cybernetics, 22:660--674, 1998.

[4868] Sarawagi, S. and Thomas, S. and Agrawal, R. Integrating Mining with Relational Database Systems: Alternatives and Implications. SIGMOD98, pages 343--354, Seattle, WA, 1998.

[4869] Satou, K. and Shibayama, G. and Ono, T. and Yamamura, Y. and Furuichi,E. and Kuhara, S. and Takagi, T. Finding Association Rules on Heterogeneous Genome Data. Proc. of the Pacific Symp. on Biocomputing, pages 397--408, Hawaii, 1997.

[4870] Savasere, A. and Omiecinski, E. and Navathe, S. An efficient algorithm for mining association rules in large databases. Proc. of the 21st Int. Conf. on Very Large Databases (VLDB`95), pages 432-444, Zurich, Switzerland, 1995.

[4871] A. Savasere and E. Omiecinski and S. Navathe. Mining for Strong Negative Associations in a Large Database of Customer Transactions. ICDE98, pages 494--502, Orlando, Florida, 1998.

[4872] Schaffer, C. Overfitting avoidence as bias. Machine Learning, 10:153--178, 1993.

[4873] Schapire, R. E. The Boosting Approach to Machine Learning: An Overview. MSRI Workshop on Nonlinear Estimation and Classification, 2002.

[4874] Schölkopf, B. and Smola, A. J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, 2001.

[4875] Schuermann, J. and Doster, W. A decision-theoretic approach in hierarchical classifier design. Pattern Recognition, 17:359--369, 1984.

[4876] Advances in Distributed and Parallel Knowledge Discovery. AAAI Press, 2002.

[4877] Advances in Knowledge Discovery and Data Mining.. AAAI/MIT Press, 1996.

[4878] Rakesh Agrawal and Johannes Gehrke and Dimitrios Gunopulos and Prabhakar Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. In Laura M. Haas and Ashutosh Tiwary, editors, SIGMOD98, pages 94--105, Seattle, Washington, 1998. ACM Press.

[4879] Ming-Syan Chen and Jiawei Han and Philip S. Yu. Data Mining: An Overview from a Database Perspective. IEEE Transactions on Knowledge abd Data Engineering, 8(6):866-883, 1996.

[4880] Seno, M. and Karypis, G. LPMiner: An Algorithm for Finding Frequent Itemsets Using Length-Decreasing Support Constraint. ICDM01, pages 505--512, San Jose, CA, 2001.

[4881] Seno, M. and Karypis, G. SLPMiner: An Algorithm for Finding Frequent Sequential Patterns Using Length-Decreasing Support Constraint. ICDM02, pages 418--425, Maebashi City, Japan, 2002.

[4882] Shafer, J. C. and Agrawal, R. and Mehta, M. SPRINT: A Scalable Parallel Classifier for Data Mining. VLDB96, pages 544--555, Bombay, India, 1996.

[4883] Shintani, T. and Kitsuregawa, M. Hash based parallel algorithms for mining association rules. Proc of the 4th Intl. Conf. on Parallel and Distributed Info. Systems, pages 19--30, Miami Beach, FL, 1996.

[4884] Silberschatz, A. and Tuzhilin, A. What makes patterns interesting in knowledge discovery systems. IEEE Trans. on Knowledge and Data Engineering, 8(6):970--974, 1996.

[4885] Silverstein, C. and Brin, S. and Motwani, R. Beyond market baskets: Generalizing association rules to dependence rules. Data Mining and Knowledge Discovery, 2(1):39--68, 1998.

[4886] Simpson, E.-H. The Interpretation of Interaction in Contingency Tables. Journal of the Royal Statistical Society, B(13):238--241, 1951.

[4887] Singh, L. and Chen, B. and Haight, R. and Scheuermann, P. An Algorithm for Constrained Association Rule Mining in Semi-structured Data. PAKDD99, pages 148--158, Beijing, China, 1999.

[4888] Smyth, P. and Goodman, R. M. An Information Theoretic Approach to Rule Induction from Databases. IEEE Trans. on Knowledge and Data Engineering, 4(4):301--316, 1992.

[4889] Padhraic Smyth. Breaking out of the Black-Box: Research Challenges in Data Mining. DMKD01, 2001.

[4890] Padhraic Smyth and Daryl Pregibon and Christos Faloutsos. Data-driven evolution of data mining algorithms. Communications of the ACM, 45(8):33-37, 2002.

[4891] Srikant, R. and Agrawal, R. Mining Generalized Association Rules. VLDB95, pages 407--419, Zurich, Switzerland, 1995.

[4892] Srikant, R. and Agrawal, R. Mining Quantitative Association Rules in Large Relational Tables. SIGMOD96, pages 1--12, Montreal, Canada, 1996.

[4893] Srikant, R. and Agrawal, R. Mining Sequential Patterns: Generalizations and Performance Improvements. Proc. of the 5th Intl Conf. on Extending Database Technology (EDBT'96), pages 18--32, Avignon, France, 1996.

[4894] Srikant, R. and Vu, Q. and Agrawal, R. Mining Association Rules with Item Constraints. KDD97, pages 67--73, Newport Beach, CA, 1997.

[4895] Steinbach, M. and Tan, P. N. and Kumar, V. Support Envelopes: A Technique for Exploring the Structure of Association Patterns. KDD04, pages 296--305, Seattle, WA, 2004.

[4896] Steinbach, M. and Tan, P. N. and Xiong, H. and Kumar, V. Extending the Notion of Support. KDD04, pages 689--694, Seattle, WA, 2004.

[4897] Suzuki, E. Autonomous Discovery of Reliable Exception Rules. KDD97, pages 259--262, Newport Beach, CA, 1997.

[4898] Tan, P. N. and Kumar, V. Mining Association Patterns in Web Usage Data. Proc. of the Intl. Conf. on Advances in Infrastructure for e-Business, e-Education, e-Science and e-Medicine on the Internet, L'Aquila, Italy, 2002.

[4899] Tan, P. N. and Kumar, V. and Srivastava, J. Indirect Association: Mining Higher Order Dependencies in Data. PKDD00, pages 632--637, Lyon, France, 2000.

[4900] Tan, P. N. and Kumar, V. and Srivastava, J. Selecting the Right Interestingness Measure for Association Patterns. KDD02, pages 32--41, Edmonton, Canada, 2002.

[4901] Tan, P. N. and Steinbach, M. and Kumar, V. and Klooster, S. and Potter, C. and Torregrosa, A. Finding Spatio-Temporal Patterns in Earth Science Data. KDD 2001 Workshop on Temporal Data Mining, San Francisco, CA, 2001.

[4902] Tax, D. M. J. and Duin, R. P. W. Using Two-Class Classifiers for Multiclass Classification. Proc. of the 16th Intl. Conf. on Pattern Recognition (ICPR 2002), pages 124--127, Quebec, Canada, 2002.

[4903] Teng, W. G. and Hsieh, M. J. and Chen, M.-S. On the Mining of Substitution Rules for Statistically Dependent Items. ICDM02, pages 442--449, Maebashi City, Japan, 2002.

[4904] Toivonen, H and Klemettinen, M. and Ronkainen, P. and Hatonen, K. and Mannila, H. Pruning and Grouping Discovered Association Rules. ECML-95 Workshop on Statistics, Machine Learning and Knowledge Discovery in Databases, pages 47 -- 52, Heraklion, Greece, 1995.

[4905] Toivonen, H. Sampling Large Databases for Association Rules. VLDB96, pages 134--145, Bombay, India, 1996.

[4906] Tsur, S. and Ullman, J. and Abiteboul, S. and Clifton, C. and Motwani, R. and Nestorov, S. and Rosenthal, A. Query Flocks: A Generalization of Association Rule Mining. SIGMOD98, pages 1--12, Seattle, WA, 1998.

[4907] Tung, Anthony and Lu, H. J. and Han, Jiawei and Feng, Ling. Breaking the Barrier of Transactions: Mining Inter-Transaction Association Rules. KDD99, pages 297--301, San Diego, CA, 1999.

[4908] Utgoff, P. E. and Brodley, C. E. An incremental method for finding multivariate splits for decision trees. ICML90, pages 58--65, Austin, TX, 1990.

[4909] Vapnik, V. Statistical Learning Theory. John Wiley & Sons, New York, 1998.

[4910] Vapnik, V. The Nature of Statistical Learning Theory. Springer Verlag, New York, 1995.

[4911] Wang, H. and Zaniolo, C. CMP: A Fast Decision Tree Classifier Using Multivariate Predictions. ICDE00, pages 449--460, San Diego, CA, 2000.

[4912] Wang, K. and He, Y. and Han, J. Mining Frequent Itemsets Using Support Constraints. VLDB00, pages 43--52, Cairo, Egypt, 2000.

[4913] Wang, K. and Tay, S. H. and Liu, B. Interestingness-Based Interval Merger for Numeric Association Rules. KDD98, pages 121--128, New York, NY, 1998.

[4914] Wang, Q. R. and Suen, C. Y. Large tree classifier with heuristic search and global training. IEEE Trans. on Pattern Analysis and Machine Intelligence, 9(1):91--102, 1987.

[4915] Webb, A. R. Statistical Pattern Recognition. John Wiley & Sons, 2nd edition, 2002.

[4916] Webb, G. I. Discovering associations with numeric variables. KDD01, pages 383--388, San Francisco, CA, 2001.

[4917] Webb, G. I. Preliminary investigations into statistically valid exploratory rule discovery. Proc. of the Australasian Data Mining Workshop (AusDM03), Canberra, Australia, 2003.

[4918] Weiss, G. M. Mining with Rarity: A Unifying Framework. SIGKDD Explorations, 6(1):7--19, 2004.

[4919] Witten, I. H. and Frank, E. Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, 1999.

[4920] Wu, X. and Zhang, C. and Zhang, S. Mining Both Positive and Negative Association Rules. ACM Trans. on Information Systems, 22(3):381--405, 2004.

[4921] Xindong Wu and Philip S. Yu and Gregory Piatetsky-Shapiro. Data Mining: How Research Meets Practical Development?. Knowledge and Information Systems, 5(2):248-261, 2003.

[4922] Xiong, H. and He, X. and Ding, C. and Zhang, Y. and Kumar, V. and Holbrook, S. R. Identification of Functional Modules in Protein Complexes via Hyperclique Pattern Discovery. Proc. of the Pacific Symposium on Biocomputing, (PSB 2005), Maui, 2005.

[4923] Xiong, H. and Shekhar, S. and Tan, P. N. and Kumar, V. Exploiting a Support-based Upper Bound of Pearson's Correlation Coefficient for Efficiently Identifying Strongly Correlated Pairs. KDD04, pages 334-343, Seattle, WA, 2004.

[4924] Xiong, H. and Steinbach, M. and Tan, P. N. and Kumar, V. HICAP: Hierarchial Clustering with Pattern Preservation. SDM04, pages 279--290, Orlando, FL, 2004.

[4925] Xiong, H. and Tan, P. N. and Kumar, V. Mining Strong Affinity Association Patterns in Data Sets with Skewed Support Distribution. ICDM03, pages 387--394, Melbourne, FL, 2003.

[4926] Yan, X. and Han, J. gSpan: Graph-based Substructure Pattern Mining. ICDM02, pages 721--724, Maebashi City, Japan, 2002.

[4927] Yang, C. and Fayyad, U. M. and Bradley, P. S. Efficient discovery of error-tolerant frequent itemsets in high dimensions. KDD01, pages 194--203, San Francisco, CA, 2001.

[4928] Zadrozny, B. and Langford, J. C. and Abe, N. Cost-Sensitive Learning by Cost-Proportionate Example Weighting. ICDM03, pages 435--442, Melbourne, FL, 2003.

[4929] Zaki, M. J. Efficiently mining frequent trees in a forest. KDD02, pages 71--80, Edmonton, Canada, 2002.

[4930] Zaki, M. J. Generating Non-Redundant Association Rules. KDD00, pages 34--43, Boston, MA, 2000.

[4931] Zaki, M. J. Parallel and Distributed Association Mining: A Survey. IEEE Concurrency, special issue on Parallel Mechanisms for Data Mining, 7(4):14--25, 1999.

[4932] Zaki, M. J. and Orihara, M. Theoretical foundations of association rules. DMKD98, Seattle, WA, 1998.

[4933] Zaki, M. J. and Parthasarathy, S. and Ogihara, M. and Li, W. New Algorithms for Fast Discovery of Association Rules. KDD97, pages 283--286, Newport Beach, CA, 1997.

[4934] Zhang, H. and Padmanabhan, B. and Tuzhilin, A. On the Discovery of Significant Statistical Quantitative Rules. KDD04, pages 374--383, Seattle, WA, 2004.

[4935] Zhang, Z. and Lu, Y. and Zhang, B. An Effective Partioning-Combining Algorithm for Discovering Quantitative Association Rules. PAKDD97, Singapore, 1997.

[4936] Data Mining for Scientific and Engineering Applications. Kluwer Academic Publishers, 2001.

[4937] "C. Clifton and M. Kantarcioglu and J. Vaidya. Defining privacy for data mining. National Science Foundation Workshop on Next Generation Data Mining, pages 126--133, Baltimore, MD, 2002.

[4938] Large-Scale Parallel Data Mining. Springer, 2002.

[4939] Rakesh Agrawal and Ramakrishnan Srikant. Privacy-preserving data mining. SIGMOD00, pages 439--450, Dallas, Texas, 2000. ACM Press.

[4940] Mark S. Aldenderfer and Roger K. Blashfield. Cluster Analysis. Sage Publications, Los Angeles, 1985.

[4941] Michael R. Anderberg. Cluster Analysis for Applications. Academic Press, New York, 1973.

[4510] Andrews, R. and Diederich, J. and Tickle, A. A Survey and Critique of Techniques For Extracting Rules From Trained Artificial Neural Networks. Knowledge Based Systems, 8(6):373--389, 1995.

[4942] Phipps Arabie and Lawrence Hubert and G. De Soete. An overview of combinatorial data analysis. In P. Arabie and L. Hubert and G. De Soete, editors, Clustering and Classification, pages 188--217. World Scientific, Singapore, 1996.

[4943] G. Ball and D. Hall. A Clustering Technique for Summarizing Multivariate Data. Behavior Science, 12:153--155, 1967.

[4944] A. Banerjee and S. Merugu and I. S. Dhillon and J. Ghosh. Clustering with Bregman Divergences. In Michael W. Berry and Umeshwar Dayal and Chandrika Kamath and David Skillicorn, editors, SDM04, pages 234--245, Lake Buena Vista, FL, 2004.

[4945] Hans Hermann Bock and Edwin Diday. Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data (Studies in Classification, Data Analysis, and Knowledge Organization). Springer-Verlag Telos, 2000.

[4946] Ingwer Borg and Patrick Groenen. Modern Multidimensional Scaling---Theory and Applications. Springer-Verlag, 1997.

[4947] William G. Cochran. Sampling Techniques. John Wiley & Sons, 3rd edition, 1977.

[4948] James W. Demmel. Applied Numerical Linear Algebra. Society for Industrial & Applied Mathematics, 1997.

[4949] Pedro Domingos and Geoff Hulten. Mining high-speed data streams. KDD00, pages 71--80, Boston, Massachusetts, 2000. ACM Press.

[4950] Gaohua Gu, Feifang Hu and Huan Liu. Sampling and Its Application in Data Mining: A Survey. Technical report, TRA6/00, National University of Singapore, Singapore, 2000.

[4951] C. Giannella and J. Han and J. Pei and X. Yan and P. S. Yu. Mining Frequent Patterns in Data Streams at Multiple Time Granularities. In H. Kargupta and A. Joshi and K. Sivakumar and Y. Yesha, editors, Next Generation Data Mining, pages 191-212. AAAI/MIT, 2003.

[4952] D. J. Hand. Statistics and the Theory of Measurement. Journal of the Royal Statistical Society: Series A (Statistics in Society), 159(3):445-492, 1996.

[4953] Hillol Kargupta and Souptik Datta and Qi Wang and Krishnamoorthy Sivakumar. On the Privacy Preserving Properties of Random Data Perturbation Techniques. ICDM03, pages 99-106, Melbourne, Florida, 2003. IEEE Computer Society.

[4954] Daniel Kifer and Shai Ben-David and Johannes Gehrke. Detecting Change in Data Streams. VLDB04, pages 180-191, Toronto, Canada, 2004. Morgan Kaufmann.

[4955] David Krantz and R. Duncan Luce and Patrick Suppes and Amos Tversky. Foundations of Measurements: Volume 1: Additive and polynomial representations. Academic Press, New York, 1971.

[4956] Martin H. C. Law and Nan Zhang and Anil K. Jain. Nonlinear Manifold Learning for Data Streams.In Michael W. Berry and Umeshwar Dayal and Chandrika Kamath and David Skillicorn, editors, SDM04, Lake Buena Vista, Florida, 2004. SIAM.

[4957] B. W. Lindgren. Statistical Theory. CRC Press, 1993.

[4958] R. Duncan Luce and David Krantz and Patrick Suppes and Amos Tversky. Foundations of Measurements: Volume 3: Representation, Axiomatization, and Invariance. Academic Press, New York, 1990.

[4959] F. Olken and D. Rotem. Random Sampling from Databases---A Survey. Statistics & Computing, 5(1):25--42, 1995.

[4960] Jason Osborne. Notes on the Use of Data Transformations. Practical Assessment, Research & Evaluation, 28(6), 2002.

[4961] Christopher R. Palmer and Christos Faloutsos. Density biased sampling: An improved method for data mining and clustering. ACM SIGMOD Record, 29(2):82--92, 2000.

[4962] Spiros Papadimitriou and Anthony Brockwell and Christos Faloutsos. Adaptive, unsupervised stream mining. VLDB Journal, 13(3):222-239, 2004.

[4963] Foster J. Provost and David Jensen and Tim Oates. Efficient Progressive Sampling. KDD99, pages 23--32, 1999.

[4964] Stanley Smith Stevens. Measurement. In Gary Michael Maranell, editors, Scaling: A Sourcebook for Behavioral Scientists, pages 22--41. Aldine Publishing Co., Chicago, 1974.

[4965] Stanley Smith Stevens. On the Theory of Scales of Measurement. Science, 103(2684):677--680, 1946.

[4966] Patrick Suppes and David Krantz and R. Duncan Luce and Amos Tversky. Foundations of Measurements: Volume 2: Geometrical, Threshold, and Probabilistic Representations. Academic Press, New York, 1989.

[4967] Hannu Toivonen. Sampling Large Databases for Association Rules. In T. M. Vijayaraman and Alejandro P. Buchmann and C. Mohan and Nandlal L. Sarda, editors, VLDB96, pages 134--145, 1996. Morgan Kaufman.

[4968] John W. Tukey. On the Comparative Anatomy of Transformations. Annals of Mathematical Statistics, 28(3):602--632, 1957.

[4969] Vassilios S. Verykios and Elisa Bertino and Igor Nai Fovino and Loredana Parasiliti Provenza and Yucel Saygin and Yannis Theodoridis. State-of-the-art in privacy preserving data mining. SIGMOD Record, 33(1):50--57, 2004.

[4970] Richard Y. Wang and Mostapha Ziad and Yang W. Lee and Y. Richard Wang. Data Quality of The Kluwer International Series on Advances in Database Systems, Volume 23. Kluwer Academic Publishers, 2001.

[4971] Mohammed Javeed Zaki and Srinivasan Parthasarathy and Wei Li and Mitsunori Ogihara. Evaluation of Sampling for Data Mining of Association Rules. Technical report, TR617, Rensselaer Polytechnic Institute, 1996.

[4972] Feature Extraction, Construction and Selection: A Data Mining Perspective of Kluwer International Series in Engineering and Computer Science, 453. Kluwer Academic Publishers, 1998.

[4973] MIT Total Data Quality Management Program. web.mit.edu/tdqm/www/index.shtml, 2003.

[4974] Mihael Ankerst and Markus M. Breunig and Hans-Peter Kriegel and Jörg Sander. OPTICS: Ordering Points To Identify the Clustering Structure. In Alex Delis and Christos Faloutsos and Shahram Ghandeharizadeh, editors, SIGMOD99, pages 49--60, Philadelphia, Pennsylvania, 1999. ACM Press.

[4975] Daniel Barbará. Requirements for clustering data streams. SIGKDD Explorations Newsletter, 3(2):23--27, 2002.

[4976] Pavel Berkhin. Survey Of Clustering Data Mining Techniques. Technical report, Accrue Software, San Jose, CA, 2002.

[4977] J. Bilmes. A Gentle Tutorial on the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models. Technical report, ICSI-TR-97-021, University of California at Berkeley, 1997.

[4978] C. M. Bishop and M. Svensen and C. K. I. Williams. GTM: A principled alternative to the self-organizing map. In C. von der Malsburg and W. von Seelen and J. C. Vorbruggen and B. Sendhoff, editors, Artificial Neural Networks---ICANN96. Intl. Conf, Proc., pages 165-170. Springer-Verlag, Berlin, Germany, 1996.

[4979] Avrim Blum and Pat Langley. Selection of Relevant Features and Examples in Machine Learning. Artificial Intelligence, 97(1--2):245--271, 1997.

[4980] Daniel Boley. Principal Direction Divisive Partitioning. Data Mining and Knowledge Discovery, 2(4):325-344, 1998.

[4981] Paul S. Bradley and Usama M. Fayyad. Refining Initial Points for K-Means Clustering. In Jude W. Shavlik, editors, ICML98, pages 91--99, Madison, WI, 1998. Morgan Kaufmann Publishers Inc.

[4982] Paul S. Bradley and Usama M. Fayyad and Cory Reina. Scaling Clustering Algorithms to Large Databases. In Rakesh Agrawal and Paul Stolorz and Gregory Piatetsky-Shapiro, editors, KDD98, pages 9--15, New York City, 1998. AAAI Press.

[4983] Peter Cheeseman and James Kelly and Matthew Self and John Stutz and Will Taylor and Don Freeman. AutoClass: a Bayesian classification system. Readings in knowledge acquisition and learning: automating the construction and improvement of expert systems, pages 431--441. Morgan Kaufmann Publishers Inc., 1993.

[4984] James Dougherty and Ron Kohavi and Mehran Sahami. Supervised and Unsupervised Discretization of Continuous Features. ICML95, pages 194--202, 1995.

[4985] Duda, Robert O. and Hart, Peter E. and Stork, David G. Pattern Classification. John Wiley & Sons, Inc., New York, Second edition, 2001.

[4986] Tapio Elomaa and Juho Rousu. General and Efficient Multisplitting of Numerical Attributes. Machine Learning, 36(3):201--244, 1999.

[4987] Levent Ertöz and Michael Steinbach and Vipin Kumar. A New Shared Nearest Neighbor Clustering Algorithm and its Applications. Workshop on Clustering High Dimensional Data and its Applications, Proc. of Text Mine'01, First SIAM Intl. Conf. on Data Mining, Chicago, IL, USA, 2001.

[4988] Levent Ertöz and Michael Steinbach and Vipin Kumar. Finding Clusters of Different Sizes, Shapes, and Densities in Noisy, High Dimensional Data. SDM03, San Francisco, 2003. SIAM.

[4989] Martin Ester and Hans-Peter Kriegel and Jörg Sander and Michael Wimmer and Xiaowei Xu. Incremental Clustering for Mining in a Data Warehousing Environment. In Ashish Gupta and Oded Shmueli and Jennifer Widom, editors, VLDB98, pages 323--333, New York City, 1998. Morgan Kaufmann.

[4990] Martin Ester and Hans-Peter Kriegel and Jorg Sander and Xiaowei Xu. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Evangelos Simoudi and Jiawei Han and Usama M. Fayyad, editors, KDD96, pages 226--231, Portland, Oregon, 1996. AAAI Press.

[4991] Brian S. Everitt and Sabine Landau and Morven Leese. Cluster Analysis. Arnold Publishers, London, Fourth edition, 2001.

[4992] U. M. Fayyad and K. B. Irani. Multi-interval discretization of continuousvalued attributes for classification learning. Proc. 13th Int. Joint Conf. on Artificial Intelligence, pages 1022--1027, 1993. Morgan Kaufman.

[4993] Douglas Fisher. Iterative Optimization and Simplification of Hierarchical Clusterings. Journal of Artificial Intelligence Research, 4:147--179, 1996.

[4994] Douglas Fisher and Pat Langley. Conceptual clustering and its relation to numerical taxonomy. Artificial Intelligence and Statistics, :77--116, 1986.

[4995] Chris Fraley and Adrian E. Raftery. How Many Clusters? Which Clustering Method? Answers Via Model-Based Cluster Analysis. The Computer Journal, 41(8):578--588, 1998.

[4996] Venkatesh Ganti and Johannes Gehrke and Raghu Ramakrishnan. CACTUS--Clustering Categorical Data Using Summaries. KDD99, pages 73--83, 1999. ACM Press.

[4997] Allen Gersho and Robert M. Gray. Vector Quantization and Signal Compression, volume 159 of Kluwer International Series in Engineering and Computer Science. Kluwer Academic Publishers, 1992.

[4998] Joydeep Ghosh. Scalable Clustering Methods for Data Mining. In Nong Ye, editors, Handbook of Data Mining, pages 247--277. Lawrence Ealbaum Assoc, 2003.

[4999] David Gibson and Jon M. Kleinberg and Prabhakar Raghavan. Clustering Categorical Data: An Approach Based on Dynamical Systems. VLDB Journal, 8(3--4):222--236, 2000.

[5000] K. C. Gowda and G. Krishna. Agglomerative Clustering Using the Concept of Mutual Nearest Neighborhood. Pattern Recognition, 10(2):105--112, 1978.

[5001] Sudipto Guha and Adam Meyerson and Nina Mishra and Rajeev Motwani and Liadan O'Callaghan. Clustering Data Streams: Theory and Practice. IEEE Transactions on Knowledge and Data Engineering, 15(3):515--528, 2003.

[5002] Sudipto Guha and Rajeev Rastogi and Kyuseok Shim. CURE: An Efficient Clustering Algorithm for Large Databases. In Laura M. Haas and Ashutosh Tiwary, editors, SIGMOD98, pages 73--84, 1998. ACM Press.

[5003] Sudipto Guha and Rajeev Rastogi and Kyuseok Shim. ROCK: A Robust Clustering Algorithm for Categorical Attributes. In Masaru Kitsuregawa and Leszek Maciaszek and Mike Papazoglou and Calton Pu, editors, ICDE99, pages 512--521, 1999. IEEE Computer Society.

[5004] Maria Halkidi and Yannis Batistakis and Michalis Vazirgiannis. Cluster validity methods: part I. SIGMOD Record (ACM Special Interest Group on Management of Data), 31(2):40--45, 2002.

[5005] Maria Halkidi and Yannis Batistakis and Michalis Vazirgiannis. Clustering validity checking methods: part II. SIGMOD Record (ACM Special Interest Group on Management of Data), 31(3):19--27, 2002.

[5006] Greg Hamerly and Charles Elkan. Alternatives to the k-means algorithm that find better clusterings. CIKM02, pages 600--607, McLean, Virginia, 2002. ACM Press.

[5007] Jiawei Han and Micheline Kamber and Anthony Tung. Spatial Clustering Methods in Data Mining: A review. In Harvey J. Miller and Jiawei Han, editors, Geographic Data Mining and Knowledge Discovery, pages 188--217. Taylor and Francis, London, 2001.

[5008] John Hartigan. Clustering Algorithms. Wiley, New York, 1975.

[5009] Alexander Hinneburg and Daniel A. Keim. Optimal Grid-Clustering: Towards Breaking the Curse of Dimensionality in High-Dimensional Clustering. In M. P. Atkinson and M. E. Orlowska and P. Valduriez and S. B. Zdonik and M. L. Brodie, editors, VLDB99, pages 506--517, Edinburgh, Scotland, UK, 1999. Morgan Kaufmann.

[5010] Alexander Hinneburg and Daniel. A. Keim. An Efficient Approach to Clustering in Large Multimedia Databases with Noise. In Rakesh Agrawal and Paul Stolorz, editors, KDD98, pages 58--65, New York City, 1998. AAAI Press.

[5011] F. Hussain and H. Liu and C. L. Tan and M. Dash. TRC6/99: Discretization: an enabling technique. Technical report, National University of Singapore, Singapore, 1999.

[5012] Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data of Prentice Hall Advanced Reference Series. Prentice Hall, 1988. Book available online at http://www.cse.msu.edu/ : jain/Clustering_Jain_Dubes.pdf.

[5013] Anil K. Jain and M. Narasimha Murty and Patrick J. Flynn. Data clustering: A review. ACM Computing Surveys, 31(3):264--323, 1999.

[5014] Nicolas Jardine and Robin Sibson. Mathematical Taxonomy. Wiley, New York, 1971.

[5015] R. A. Jarvis and E. A. Patrick. Clustering Using a Similarity Measure Based on Shared Nearest Neighbors. IEEE Transactions on Computers, C-22(11):1025-1034, 1973.

[5016] I. T. Jolliffe. Principal Component Analysis. Springer Verlag, 2nd edition, 2002.

[5017] Istvan Jonyer and Diane J. Cook and Lawrence B. Holder. Graph-based hierarchical conceptual clustering. Journal of Machine Learning Research, 2:19--43, 2002.

[5018] Karin Kailing and Hans-Peter Kriegel and Peer Kröger. Density-Connected Subspace Clustering for High-Dimensional Data. In Michael W. Berry and Umeshwar Dayal and Chandrika Kamath and David B. Skillicorn, editors, SDM04, pages 428--439, Lake Buena Vista, Florida, 2004. SIAM.

[5019] George Karypis and Eui-Hong Han and Vipin Kumar. CHAMELEON: A Hierarchical Clustering Algorithm Using Dynamic Modeling. IEEE Computer, 32(8):68--75, 1999.

[5020] George Karypis and Eui-Hong Han and Vipin Kumar. Multilevel Refinement for Hierarchical Clustering. Technical report, TR 99-020, University of Minnesota, Minneapolis, MN, 1999.

[5021] George Karypis and Vipin Kumar. Multilevel k-way Partitioning Scheme for Irregular Graphs. Journal of Parallel and Distributed Computing, 48(1):96-129, 1998.

[5022] Leonard Kaufman and Peter J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster Analysis of Wiley Series in Probability and Statistics. John Wiley and Sons, New York, 1990.

[5023] Jon M. Kleinberg. An Impossibility Theorem for Clustering. Proc. of the 16th Annual Conf. on Neural Information Processing Systems, 2002.

[5024] Ron Kohavi and George H. John. Wrappers for Feature Subset Selection. Artificial Intelligence, 97(1--2):273--324, 1997.

[5025] Teuvo Kohonen and Thomas S. Huang and Manfred R. Schroeder. Self-Organizing Maps. Springer-Verlag, 2000.

[5026] Joseph B. Kruskal and Eric M. Uslaner. Multidimensional Scaling. Sage Publications, 1978.

[5027] Bjornar Larsen and Chinatsu Aone. Fast and Effective Text Mining Using Linear-Time Document Clustering. KDD99, pages 16--22, San Diego, California, 1999. ACM Press.

[5028] H. Liu and H. Motoda and L. Yu. Feature Extraction, Selection, and Construction. In Nong Ye, editors, The Handbook of Data Mining, pages 22--41. Lawrence Erlbaum Associates, Inc., Mahwah, NJ, 2003.

[5029] Huan Liu and Hiroshi Motoda. Feature Selection for Knowledge Discovery and Data Mining of Kluwer International Series in Engineering and Computer Science, 454. Kluwer Academic Publishers, 1998.

[5030] J. MacQueen. Some methods for classification and analysis of multivariate observations. In Le Cam, L. M. and Neyman, J., editors, Proc. of the 5th Berkeley Symp. on Mathematical Statistics and Probability, pages 281--297, 1967. University of California Press.

[5031] Michalski, R. S. and Stepp, R. E. Automated Construction of Classifications: Conceptual Clustering Versus Numerical Taxonomy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 5(4):396--409, 1983.

[5032] Glen W. Milligan. Clustering Validation: Results and Implications for Applied Analyses. In P. Arabie and L. Hubert and G. De Soete, editors, Clustering and Classification, pages 345--375. World Scientific, Singapore, 1996.

[5033] Boris Mirkin. Mathematical Classification and Clustering, volume 11 of Nonconvex Optimization and Its Applications. Kluwer Academic Publishers, 1996.

[5034] Nina Mishra and Dana Ron and Ram Swaminathan. A New Conceptual Clustering Framework. Machine Learning Journal, 56(1--3):115--151, 2004.

[5035] Luis Carlos Molina and Lluis Belanche and Angela Nebot. Feature Selection Algorithms: A Survey and Experimental Evaluation. ICDM02, 2002.

[5036] Fionn Murtagh. Clustering massive data sets. In J. Abello and P. M. Pardalos and M. G. C. Reisende, editors, Handbook of Massive Data Sets. Kluwer, 2000.

[5037] Fionn Murtagh. Multidimensional Clustering Algorithms. Physica-Verlag, Heidelberg and Vienna, 1985.

[5038] Harsha Nagesh and Sanjay Goil and Alok Choudhary. Parallel Algorithms for Clustering High-Dimensional Large-Scale Datasets. In Robert L. Grossman and Chandrika Kamath and Philip Kegelmeyer and Vipin Kumar and Raju Namburu, editors, Data Mining for Scientific and Engineering Applications, pages 335--356. Kluwer Academic Publishers, Dordrecht, Netherlands, 2001.

[5039] Raymond T. Ng and Jiawei Han. CLARANS: A Method for Clustering Objects for Spatial Data Mining. IEEE Transactions on Knowledge and Data Engineering, 14(5):1003--1016, 2002.

[5040] Dan Pelleg and Andrew W. Moore. X -means: Extending K -means with Efficient Estimation of the Number of Clusters. ICML00, pages 727--734, 2000. Morgan Kaufmann, San Francisco, CA.

[5041] Markus Peters and Mohammed J. Zaki. CLICKS: Clustering Categorical Data using K-partite Maximal Cliques. ICDE05, Tokyo, Japan, 2005.

[5042] Thomas C. Redman. Data Quality: The Field Guide. Digital Press, 2001.

[5043] Charles Romesburg. Cluster Analysis for Researchers. Life Time Learning, Belmont, CA, 1984.

[5044] J. Sander and M. Ester and H.-P. Kriegel and X. Xu. Density-Based Clustering in Spatial Databases: The Algorithm GDBSCAN and its Applications. Data Mining and Knowledge Discovery, 2(2):169--194, 1998.

[5045] Sergio M. Savaresi and Daniel Boley. A comparative analysis on the bisecting K-means and the PDDP clustering algorithms. Intelligent Data Analysis, 8(4):345-362, 2004.

[5046] Erich Schikuta and Martin Erhart. The BANG-Clustering System: Grid-Based Data Analysis. In Xiaohui Liu and Paul R. Cohen and Michael R. Berthold, editors, Advances in Intelligent Data Analysis, Reasoning about Data, Second Intl. Symposium, IDA-97, London in Lecture Notes in Computer Science, pages 513--524, 1997. Springer.

[5047] Gholamhosein Sheikholeslami and Surojit Chatterjee and Aidong Zhang. Wavecluster: A multi-resolution clustering approach for very large spatial databases. In Ashish Gupta and Oded Shmueli and Jennifer Widom, editors, VLDB98, pages 428--439, New York City, 1998. Morgan Kaufmann.

[5048] Sneath, Peter H. A. and Robert R. Sokal. Numerical Taxonomy. Freeman, San Francisco, 1971.

[5049] Helmuth Späth. Cluster Analysis Algorithms for Data Reduction and Classification of Objects, volume 4 of Computers and Their Application. Ellis Horwood Publishers, Chichester, 1980. ISBN 0-85312-141-9.

[5050] Ramakrishnan Srikant and Rakesh Agrawal. Mining Quantitative Association Rules in Large Relational Tables. In H. V. Jagadish and Inderpal Singh Mumick, editors, SIGMOD96, pages 1--12, Montreal, Quebec, Canada, 1996.

[5051] Michael Steinbach and George Karypis and Vipin Kumar. A Comparison of Document Clustering Techniques. Proc. of KDD Workshop on Text Mining, Proc. of the 6th Intl. Conf. on Knowledge Discovery and Data Mining, Boston, MA, 2000.

[5052] Robert E. Stepp and Ryszard S. Michalski. Conceptual clustering of structured objects: A goal-oriented approach. Artificial Intelligence, 28(1):43--69, 1986.

[5053] Alexander Strehl and Joydeep Ghosh. A Scalable Approach to Balanced, High-dimensional Clustering of Market-Baskets. Proc. of the 7th Intl. Conf. on High Performance Computing (HiPC 2000) in Lecture Notes in Computer Science, pages 525--536, Bangalore, India, 2000. Springer.

[5054] Charles T. Zahn. Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters. IEEE Transactions on Computers, C-20(1):68-86, 1971.

[5055] Tian Zhang and Raghu Ramakrishnan and Miron Livny. BIRCH: an efficient data clustering method for very large databases. In H. V. Jagadish and Inderpal Singh Mumick, editors, SIGMOD96, pages 103--114, Montreal, Quebec, Canada, 1996. ACM Press.

[5056] CLUTO 2.1.1: Software for Clustering High-Dimensional Datasets. /www.cs.umn.edu/ : karypis, 2003.

[4629] Agrawal, R. and Imielinski, T. and Swami, A. Database mining: A performance perspective. IEEE Transactions on Knowledge and Data Engineering, 5:914--925, 1993.

[5057] P. S. Bradley and U. M. Fayyad and C. Reina. Scaling EM (Expectation Maximization) Clustering to Large Databases. Technical report, MSR-TR-98-35, Microsoft Research, 1999.

[5058] D. A. Burn. Designing Effective Statistical Graphs. In C. R. Rao, editors, Handbook of Statistics 9. Elsevier/North-Holland, Amsterdam, The Netherlands, 1993.

[5059] Inderjit S. Dhillon and Yuqiang Guan and J. Kogan. Iterative Clustering of High Dimensional Text Data Augmented by Local Search. ICDM02, pages 131-138, 2002. IEEE Computer Society.

[5060] Inderjit S. Dhillon and Dharmendra S. Modha. Concept Decompositions for Large Sparse Text Data Using Clustering. Machine Learning, 42(1/2):143-175, 2001.

[5061] Michael Friendly. Gallery of Data Visualization. http://www.math.yorku.ca/SCS/Gallery/, 2005.

[5062] Eui-Hong Han and George Karypis and Vipin Kumar and Bamshad Mobasher. Hypergraph Based Clustering in High-Dimensional Data Sets: A Summary of Results. IEEE Data Eng. Bulletin, 21(1):15-22, 1998.

[5063] Konstantinos Kalpakis and Dhiral Gada and Vasundhara Puttagunta. Distance Measures for Effective Clustering of ARIMA Time-Series. ICDM01, pages 273-280, 2001. IEEE Computer Society.

[5064] Eamonn J. Keogh and Michael J. Pazzani. Scaling up dynamic time warping for datamining applications. Proc. of the 10th Intl. Conf. on Knowledge Discovery and Data Mining, pages 285-289, 2000.

[5065] Robert Spence. Information Visualization. ACM Press, New York, 2000.

[5066] Michael Steinbach and Pang-Ning Tan and Vipin Kumar and Steven Klooster and Christopher Potter. Discovery of climate indices using clustering. KDD '03: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 446--455, New York, NY, USA, 2003. ACM Press.

[5067] Edward R. Tufte. The Visual Display of Quantitative Information. Graphics Press, Cheshire, CT, 1986.

[5068] John W. Tukey. Exploratory data analysis. Addison-Wesley, 1977.

[5069] Velleman, Paul and Hoaglin, David. The ABC's of EDA: Applications, Basics, and Computing of Exploratory Data Analysis. Duxbury, 1981.

[5070] Bin Zhang and Meichun Hsu and Umeshwar Dayal. K-Harmonic Means---A Data Clustering Algorithm. Technical report, HPL-1999-124, Hewlett Packard Laboratories, 1999.

[5071] Ying Zhao and George Karypis. Empirical and theoretical comparisons of selected criterion functions for document clustering. Machine Learning, 55(3):311--331, 2004.

[5072] Information Visualization in Data Mining and Knowledge Discovery. Morgan Kaufmann Publishers, San Francisco, CA, 2001.

[5073] Mathematica 5.1. Wolfram Research, Inc.. http://www.wolfram.com/, 2005.

[5074] MATLAB 7.0. The MathWorks, Inc.. http://www.mathworks.com, 2005.

[5075] Microsoft Excel 2003. Microsoft, Inc.. http://www.microsoft.com/, 2003.

[4651] Agarwal, R. C. and Shafer, J. C. Parallel Mining of Association Rules. IEEE Transactions on Knowledge and Data Engineering, 8(6):962--969, 1998.

[4652] Aggarwal, C. C. and Sun, Z. and Yu, P. S. Online Generation of Profile Association Rules. KDD98, pages 129--133, New York, NY, 1996.

[4653] Aggarwal, C. C. and Yu, P. S. Mining Associations with the Collective Strength Approach. IEEE Trans. on Knowledge and Data Engineering, 13(6):863--873, 2001.

[4654] Aggarwal, C. C. and Yu, P. S. Mining Large Itemsets for Association Rules. Data Engineering Bulletin, 21(1):23--31, 1998.

[4655] Agrawal, R. and Imielinski, T. and Swami, A. Mining association rules between sets of items in large databases. Proc. ACM SIGMOD Intl. Conf. Management of Data, pages 207--216, Washington, DC, 1993.

[4656] Agrawal, R. and Srikant, R. Mining Sequential Patterns. Proc. of Intl. Conf. on Data Engineering, pages 3--14, Taipei, Taiwan, 1995.

[4657] Aha, D. W. A study of instance-based algorithms for supervised learning tasks: mathematical, empirical, and psychological evaluations. PhD thesis, University of California, Irvine, 1990.

[4658] Ali, K. and Manganaris, S. and Srikant, R. Partial Classification using Association Rules. KDD97, pages 115--118, Newport Beach, CA, 1997.

[4659] Alsabti, K. and Ranka, S. and Singh, V. CLOUDS: A Decision Tree Classifier for Large Datasets. KDD98, pages 2--8, New York, NY, 1998.

[4660] Aumann, Y. and Lindell, Y. A Statistical Theory for Quantitative Association Rules. KDD99, pages 261--270, San Diego, CA, 1999.

[5076] E. F. Codd and S. B. Codd and C. T. Smalley. Providing OLAP (On-line Analytical Processing) to User- Analysts: An IT Mandate. White Paper, E.F. Codd and Associates, 1993.

[5077] Jim Gray and Surajit Chaudhuri and Adam Bosworth and Andrew Layman and Don Reichart and Murali Venkatrao and Frank Pellow and Hamid Pirahesh. Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals. Journal Data Mining and Knowledge Discovery, 1(1):29--53, 1997.

[5078] Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems. McGraw-Hill, 3rd edition, 2002.

[5079] Arie Shoshani. OLAP and statistical databases: similarities and differences. Proc. of the Sixteenth ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems, pages 185--196, 1997. ACM Press.

[5080] Zhong, N. and Yao, Y. Y. and Ohsuga, S. Peculiarity Oriented Multi-database Mining. PKDD99, pages 136--146, Prague, Czech Republic, 1999.

[5081] R: A language and environment for statistical computing and graphics. The R Project for Statistical Computing. http://www.r-project.org/, 2005.

[4679] Allwein, E. L. and Schapire, R. E. and Singer, Y. Reducing Multiclass to Binary: A Unifying Approach to Margin Classifiers. Journal of Machine Learning Research, 1:113--141, 2000.

[4680] Antonie, M-L. and Zaďane, O. R. Mining Positive and Negative Association Rules: An Approach for Confined Rules. PKDD04, pages 27--38, Pisa, Italy, 2004.

[5082] S-PLUS. Insightful Corporation. http://www.insightful.com, 2005.

[5083] SAS: Statistical Analysis System. SAS Institute Inc.. http://www.sas.com/, 2005.

[4683] Ayres, J. and Flannick, J. and Gehrke, J. and Yiu, T. Sequential Pattern mining using a bitmap representation. KDD02, pages 429-435, Edmonton, Canada, 2002.

[4684] Barbará, D. and Couto, J. and Jajodia, S. and Wu, N. ADAM: A Testbed for Exploring the Use of Data Mining in Intrusion Detection. SIGMOD Record, 30(4):15--24, 2001.

[4685] Bay, S. D. and Pazzani, M. Detecting Group Differences: Mining Contrast Sets. Data Mining and Knowledge Discovery, 5(3):213--246, 2001.

[4686] Bayardo, R. Efficiently Mining Long Patterns from Databases. SIGMOD98, pages 85--93, Seattle, WA, 1998.

[4687] Bayardo, R. and Agrawal, R. Mining the Most Interesting Rules. KDD99, pages 145--153, San Diego, CA, 1999.

[4688] Benjamini, Y. and Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal Royal Statistical Society B, 57(1):289--300, 1995.

[4689] Breslow, L. A. and Aha, D. W. Simplifying Decision Trees: A Survey. Knowledge Engineering Review, 12(1):1--40, 1997.

[5084] SPSS: Statistical Package for the Social Sciences. SPSS, Inc.. http://www.spss.com/, 2005.

[4691] Bennett, K. and Campbell, C. Support Vector Machines: Hype or Hallelujah. SIGKDD Explorations, 2(2):1--13, 2000.

[4692] Berry, M. J. A. and Linoff, G. Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management. Wiley Computer Publishing, 2nd edition, 2004.

[4693] Bishop, C. M. Neural Networks for Pattern Recognition. Oxford University Press, Oxford, U.K., 1995.

[4694] Bolton, R. J. and Hand, D. J. and Adams, N. M. Determining Hit Rate in Pattern Search. Proc. of the ESF Exploratory Workshop on Pattern Detection and Discovery in Data Mining, pages 36--48, London, UK, 2002.

[4695] Boulicaut, J-F. and Bykowski, A. and Jeudy, B. Towards the Tractable Discovery of Association Rules with Negations. Proc. of the 4th Intl. Conf on Flexible Query Answering Systems FQAS'00, pages 425--434, Warsaw, Poland, 2000.

[4696] Bradley, A. P. The use of the area under the ROC curve in the Evaluation of Machine Learning Algorithms. Pattern Recognition, 30(7):1145--1149, 1997.

[4697] Paul S. Bradley and Johannes Gehrke and Raghu Ramakrishnan and Ramakrishnan Srikant. Scaling mining algorithms to large databases. Communications of the ACM, 45(8):38-43, 2002.

[4698] Breiman, L. Bagging Predictors. Machine Learning, 24(2):123--140, 1996.

[4699] Breiman, L. Bias, Variance, and Arcing Classifiers. Technical report, 486, University of California, Berkeley, CA, 1996.

[4700] Breiman, L. Random Forests. Machine Learning, 45(1):5--32, 2001.

[4701] Breiman, L. and Friedman, J. H. and Olshen, R. and Stone, C. J. Classification and Regression Trees. Chapman & Hall, New York, 1984.

[4702] Brin, S. and Motwani, R. and Silverstein, C. Beyond market baskets: Generalizing association rules to correlations. Proc. ACM SIGMOD Intl. Conf. Management of Data, pages 265--276, Tucson, AZ, 1997.

[4703] Brin, S. and Motwani, R. and Ullman, J. and Tsur, S. Dynamic Itemset Counting and Implication Rules for market basket data. SIGMOD97, pages 255--264, Tucson, AZ, 1997.

[4704] Buntine, W. Learning classification trees. In Hand, D. J., editors, Artificial Intelligence Frontiers in Statistics, pages 182--201, 1993. Chapman & Hall, London.

[4705] Burges, C. J. C. A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 2(2):121--167, 1998.

[4706] Cai, C. H. and Fu, A. and Cheng, C. H. and Kwong, W. W. Mining Association Rules with Weighted Items. Proc. of IEEE Intl. Database Engineering and Applications Symp., pages 68--77, Cardiff, Wales, 1998.

[4707] Cant u' -Paz, E. and Kamath, C. Using evolutionary algorithms to induce oblique decision trees. Proc. of the Genetic and Evolutionary Computation Conf., pages 1053--1060, San Francisco, CA, 2000.

[4708] Chakrabarti, S. Mining the Web: Discovering Knowledge from Hypertext Data. Morgan Kaufmann, San Francisco, CA, 2003.

[4709] Chawla, N. V. and Bowyer, K. W. and Hall, L. O. and Kegelmeyer, W. P. SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16:321--357, 2002.

[4710] Chawla, N. V. and Japkowicz, N. and Kolcz, A. Editorial: Special Issue on Learning from Imbalanced Data Sets. SIGKDD Explorations, 6(1):1--6, 2004.

[4711] Chen, Q. and Dayal, U. and Hsu, M. A Distributed OLAP infrastructure for E-Commerce. Proc. of the 4th IFCIS Intl. Conf. on Cooperative Information Systems, pages 209--220, Edinburgh, Scotland, 1999.

[4712] Cheng, H. and Yan, X. and Han, J. IncSpan: incremental mining of sequential patterns in large database. KDD04, pages 527-532, Seattle, WA, 2004.

[4713] Cherkassky, V. and Mulier, F. Learning from Data: Concepts, Theory, and Methods. Wiley Interscience, 1998.

[4714] Cheung, D. C. and Lee, S. D. and Kao, B. A General Incremental Technique for Maintaining Discovered Association Rules. Proc. of the 5th Intl. Conf. on Database Systems for Advanced Applications, pages 185--194, Melbourne, Australia, 1997.

[4715] Clark, P. and Boswell, R. Rule Induction with CN2: Some Recent Improvements. Machine Learning: Proc. of the 5th European Conf. (EWSL-91), pages 151--163, 1991.

[4716] Clark, P. and Niblett, T. The CN2 Induction Algorithm. Machine Learning, 3(4):261--283, 1989.

[4717] Cohen, W. W. Fast Effective Rule Induction. ICML95, pages 115--123, Tahoe City, CA, 1995.

[4718] Cooley, R. and Tan, P. N. and Srivastava, J. Discovery of Interesting Usage Patterns from Web Data. In Spiliopoulou, M. and Masand, B., editors, Advances in Web Usage Analysis and User Profiling, pages 163--182. Lecture Notes in Computer Science, 2000.

[4719] Cost, S. and Salzberg, S. A Weighted Nearest Neighbor Algorithm for Learning with Symbolic Features. Machine Learning, 10:57--78, 1993.

[4720] Cover, T. M. and Hart, P. E. Nearest Neighbor Pattern Classification. Knowledge Based Systems, 8(6):373--389, 1995.

[4721] Cristianini, N. and Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, 2000.

[4722] Dietterich, T. G. Ensemble Methods in Machine Learning. First Intl. Workshop on Multiple Classifier Systems, Cagliari, Italy, 2000.

[4723] Dietterich, T. G. and Bakiri, G. Solving Multiclass Learning Problems via Error-Correcting Output Codes. Journal of Artificial Intelligence Research, 2:263--286, 1995.

[4724] Dokas, P. and Ertöz, L. and Kumar, V. and Lazarevic, A. and Srivastava, J. and Tan, P. N. Data Mining for Network Intrusion Detection. Proc. NSF Workshop on Next Generation Data Mining, Baltimore, MD, 2002.

[4725] Domingos, P. MetaCost: A General Method for Making Classifiers Cost-Sensitive. KDD99, pages 155--164, San Diego, CA, 1999.

[4726] Domingos, P. The RISE system: Conquering without separating. Proc. of the 6th IEEE Intl. Conf. on Tools with Artificial Intelligence, pages 704--707, New Orleans, LA, 1994.

[4727] Domingos, P. The Role of Occam's Razor in Knowledge Discovery. Data Mining and Knowledge Discovery, 3(4):409--425, 1999.

[4728] Domingos, P. and Pazzani, M. On the Optimality of the Simple Bayesian Classifier under Zero-One Loss. Machine Learning, 29(2-3):103--130, 1997.

[4729] Dong, G. and Li, J. Efficient Mining of Emerging Patterns: Discovering Trends and Differences. KDD99, pages 43--52, San Diego, CA, 1999.

[4730] Dong, G. and Li, J. Interestingness of discovered association rules in terms of neighborhood-based unexpectedness. PAKDD98, pages 72--86, Melbourne, Australia, 1998.

[4731] Drummond, C. and Holte, R. C. C4.5, Class imbalance, and Cost sensitivity: Why under-sampling beats over-sampling. ICML'2004 Workshop on Learning from Imbalanced Data Sets II, Washington, DC, 2003.

[4732] Duda, R. O. and Hart, P. E. and Stork, D. G. Pattern Classification. John Wiley & Sons, Inc., New York, 2nd edition, 2001.

[4733] DuMouchel, W. and Pregibon, D. Empirical Bayes Screening for Multi-Item Associations. KDD01, pages 67--76, San Francisco, CA, 2001.

[4734] Dunham, M. H. Data Mining: Introductory and Advanced Topics. Prentice Hall, 2002.

[4735] Dunkel, B. and Soparkar, N. Data Organization and Access for Efficient Data Mining. ICDE99, pages 522--529, Sydney, Australia, 1999.

[4736] Efron, B. and Tibshirani, R. Cross-validation and the Bootstrap: Estimating the Error Rate of a Prediction Rule. Technical report, Stanford University, 1995.

[4737] Elkan, C. The Foundations of Cost-Sensitive Learning. Proc. of the 17th Intl. Joint Conf. on Artificial Intelligence, pages 973--978, Seattle, WA, 2001.

[4738] Esposito, F. and Malerba, D. and Semeraro, G. A Comparative Analysis of Methods for Pruning Decision Trees. IEEE Trans. Pattern Analysis and Machine Intelligence, 19(5):476--491, 1997.

[4739] F u ¨ rnkranz, J. and Widmer, G. Incremental reduced error pruning. ICML94, pages 70--77, New Brunswick, NJ, 1994.

[4740] Fabris, C. C. and Freitas, A. A. Discovering surprising patterns by detecting occurrences of Simpson's paradox. Proc. of the 19th SGES Intl. Conf. on Knowledge-Based Systems and Applied Artificial Intelligence), pages 148--160, Cambridge, UK, 1999.

[4741] Fan, W. and Stolfo, S. J. and Zhang, J. and Chan, P. K. AdaCost: misclassification cost-sensitive boosting. ICML99, pages 97--105, Bled, Slovenia, 1999.

[4742] Usama M. Fayyad and Gregory Piatetsky-Shapiro and Padhraic Smyth. From Data Mining to Knowledge Discovery: An Overview. Advances in Knowledge Discovery and Data Mining, pages 1-34. AAAI Press, 1996.

[4743] Feng, L. and Lu, H. J. and Yu, J. X. and Han, J. Mining inter-transaction associations with templates. CIKM99, pages 225--233, Kansas City, Missouri, 1999.

[4744] Ferri, C. and Flach, P. and Hernandez-Orallo, J. Learning Decision Trees Using the Area Under the ROC Curve. ICML02, pages 139--146, Sydney, Australia, 2002.

[4745] Fisher, R. A. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7:179--188, 1936.

[4746] Freitas, A. A. Understanding the crucial differences between classification and discovery of association rules---a position paper. SIGKDD Explorations, 2(1):65--69, 2000.

[4747] Freund, Y. and Schapire, R. E. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119--139, 1997.

[4748] Friedman, J. H. Data Mining and Statistics: What's the Connection?. Unpublished. www-stat.stanford.edu/ : jhf/ftp/dm-stat.ps, 1997.

[4749] Friedman, J. H. and Fisher, N. I. Bump hunting in high-dimensional data. Statistics and Computing, 9(2):123--143, 1999.

[4750] Fukuda, T. and Morimoto, Y. and Morishita, S. and Tokuyama, T. Mining Optimized Association Rules for Numeric Attributes. PODS96, pages 182--191, Montreal, Canada, 1996.

[4751] Fukunaga, K. Introduction to Statistical Pattern Recognition. Academic Press, New York, 1990.

[4752] Garofalakis, M. N. and Rastogi, R. and Shim, K. SPIRIT: Sequential Pattern Mining with Regular Expression Constraints. VLDB99, pages 223--234, Edinburgh, Scotland, 1999.

[4753] Gehrke, J. and Ramakrishnan, R. and Ganti, V. RainForest---A Framework for Fast Decision Tree Construction of Large Datasets. Data Mining and Knowledge Discovery, 4(2/3):127--162, 2000.

[4754] Clark Glymour and David Madigan and Daryl Pregibon and Padhraic Smyth. Statistical Themes and Lessons for Data Mining. Data Mining and Knowledge Discovery, 1(1):11--28, 1997.

[4755] Robert L. Grossman and Mark F. Hornick and Gregor Meyer. Data mining standards initiatives. Communications of the ACM, 45(8):59-61, 2002.

[4756] Gunopulos, D. and Khardon, R. and Mannila, H. and Toivonen, H. Data Mining, Hypergraph Transversals, and Machine Learning. PODS97, pages 209--216, Tucson, AZ, 1997.

[4757] Han, E.-H. and Karypis, G. and Kumar, V. Min-Apriori: An Algorithm for Finding Association Rules in Data with Continuous Attributes. http://www.cs.umn.edu/han, 1997.

[4758] Han, E.-H. and Karypis, G. and Kumar, V. Scalable Parallel Data Mining for Association Rules. SIGMOD97, pages 277--288, Tucson, AZ, 1997.

[4759] Han, E.-H. and Karypis, G. and Kumar, V. Text Categorization Using Weight Adjusted k-Nearest Neighbor Classification. PAKDD01, Lyon, France, 2001.

[4760] Han, E.-H. and Karypis, G. and Kumar, V. and Mobasher, B. Clustering Based on Association Rule Hypergraphs. DMKD97, Tucson, AZ, 1997.

[4761] Han, J. and Fu, Y. Mining Multiple-Level Association Rules in Large Databases. IEEE Trans. on Knowledge and Data Engineering, 11(5):798--804, 1999.

[4762] Han, J. and Fu, Y. and Koperski, K. and Wang, W. and Zaďane, O. R. DMQL: A data mining query language for relational databases. DMKD96, Montreal, Canada, 1996.

[4763] Han, J. and Kamber, M. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, San Francisco, 2001.

[4764] Han, J. and Pei, J. and Yin, Y. Mining Frequent Patterns without Candidate Generation. Proc. ACM-SIGMOD Int. Conf. on Management of Data (SIGMOD'00), pages 1--12, Dallas, TX, 2000.

[4765] Jiawei Han and Russ B. Altman and Vipin Kumar and Heikki Mannila and Daryl Pregibon. Emerging scientific applications in data mining. Communications of the ACM, 45(8):54-58, 2002.

[4766] Hand, D. J. Data Mining: Statistics and More?. The American Statistician, 52(2):112--118, 1998.

[4767] Hand, D. J. and Mannila, H. and Smyth, P. Principles of Data Mining. MIT Press, 2001.

[4768] Hastie, T. and Tibshirani, R. Classification by pairwise coupling. Annals of Statistics, 26(2):451--471, 1998.

[4769] Hastie, T. and Tibshirani, R. and Friedman, J. H. The Elements of Statistical Learning: Data Mining, Inference, Prediction. Springer, New York, 2001.

[4770] Hearst, M. Trends & Controversies: Support Vector Machines. IEEE Intelligent Systems, 13(4):18--28, 1998.

[4771] Heath, D. and Kasif, S. and Salzberg, S. Induction of Oblique Decision Trees. Proc. of the 13th Intl. Joint Conf. on Artificial Intelligence, pages 1002--1007, Chambery, France, 1993.

[4772] Heckerman, D. Bayesian Networks for Data Mining. Data Mining and Knowledge Discovery, 1(1):79--119, 1997.

[4773] Hidber, C. Online Association Rule Mining. SIGMOD99, pages 145--156, Philadelphia, PA, 1999.

[4774] Hilderman, R. J. and Hamilton, H. J. Knowledge Discovery and Measures of Interest. Kluwer Academic Publishers, 2001.

[4775] Hipp, J. and Guntzer, U. and Nakhaeizadeh, G. Algorithms for Association Rule Mining---A General Survey. SigKDD Explorations, 2(1):58--64, 2000.

[4776] Hofmann, H. and Siebes, A. P. J. M. and Wilhelm, A. F. X. Visualizing Association Rules with Interactive Mosaic Plots. KDD00, pages 227--235, Boston, MA, 2000.

[4777] Holt, J. D. and Chung, S. M. Efficient Mining of Association Rules in Text Databases. CIKM99, pages 234--242, Kansas City, Missouri, 1999.

[4778] Holte, R. C. Very Simple Classification Rules Perform Well on Most Commonly Used Data sets. Machine Learning, 11:63--91, 1993.

[4779] Houtsma, M. and Swami, A. Set-oriented Mining for Association Rules in Relational Databases. ICDE95, pages 25--33, Taipei, Taiwan, 1995.

[4780] Huang, Y. and Shekhar, S. and Xiong, H. Discovering Co-location Patterns from Spatial Datasets: A General Approach. IEEE Trans. on Knowledge and Data Engineering, 16(12):1472--1485, 2004.

[4781] Imielinski, T. and Virmani, A. and Abdulghani, A. DataMine: Application Programming Interface and Query Language for Database Mining. KDD96, pages 256--262, Portland, Oregon, 1996.

[4782] Inokuchi, A. and Washio, T. and Motoda, H. An Apriori-based Algorithm for Mining Frequent Substructures from Graph Data. PKDD00, pages 13--23, Lyon, France, 2000.

[4783] Jain, A. K. and Duin, R. P. W. and Mao, J. Statistical Pattern Recognition: A Review. IEEE Tran. Patt. Anal. and Mach. Intellig., 22(1):4--37, 2000.

[4784] Japkowicz, N. The Class Imbalance Problem: Significance and Strategies. Proc. of the 2000 Intl. Conf. on Artificial Intelligence: Special Track on Inductive Learning, pages 111--117, Las Vegas, NV, 2000.

[4785] Jaroszewicz, S. and Simovici, D. Interestingness of Frequent Itemsets Using Bayesian Networks as Background Knowledge. KDD04, pages 178--186, Seattle, WA, 2004.

[4786] Jensen, D. and Cohen, P. R. Multiple Comparisons in Induction Algorithms. Machine Learning, 38(3):309--338, 2000.

[4787] Joshi, M. V. On Evaluating Performance of Classifiers for Rare Classes. ICDM02, Maebashi City, Japan, 2002.

[4788] Joshi, M. V. and Agarwal, R. C. and Kumar, V. Mining Needles in a Haystack: Classifying Rare Classes via Two-Phase Rule Induction. SIGMOD01, pages 91-102, Santa Barbara, CA, 2001.

[4789] Joshi, M. V. and Agarwal, R. C. and Kumar, V. Predicting rare classes: can boosting make any weak learner strong?. KDD02, pages 297-306, Edmonton, Canada, 2002.

[4790] Joshi, M. V. and Karypis, G. and Kumar, V. A Universal Formulation of Sequential Patterns. Proc. of the KDD'2001 workshop on Temporal Data Mining, San Francisco, CA, 2001.

[4791] Joshi, M. V. and Karypis, G. and Kumar, V. ScalParC: A New Scalable and Efficient Parallel Classification Algorithm for Mining Large Datasets. Proc. of 12th Intl. Parallel Processing Symp. (IPPS/SPDP), pages 573-579, Orlando, FL, 1998.

[4792] Joshi, M. V. and Kumar, V. CREDOS: Classification Using Ripple Down Structure (A Case for Rare Classes). SDM04, pages 321-332, Orlando, FL, 2004.

[4793] Kamber, M. and Shinghal, R. Evaluating the Interestingness of Characteristic Rules. KDD96, pages 263--266, Portland, Oregon, 1996.

[4794] Kantardzic, M. Data Mining: Concepts, Models, Methods, and Algorithms. Wiley-IEEE Press, Piscataway, NJ, 2003.

[4795] Kass, G. V. An Exploratory Technique for Investigating Large Quantities of Categorical Data. Applied Statistics, 29:119--127, 1980.

[4796] Kim, B. and Landgrebe, D. Hierarchical decision classifiers in high-dimensional and large class data. IEEE Trans. on Geoscience and Remote Sensing, 29(4):518--528, 1991.

[4797] Klemettinen, M. A Knowledge Discovery Methodology for Telecommunication Network Alarm Databases. PhD thesis, University of Helsinki, 1999.

[4798] Kohavi, R. A Study on Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. Proc. of the 15th Intl. Joint Conf. on Artificial Intelligence, pages 1137--1145, Montreal, Canada, 1995.

[4799] Kong, E. B. and Dietterich, T. G. Error-Correcting Output Coding Corrects Bias and Variance. ICML95, pages 313--321, Tahoe City, CA, 1995.

[4800] Kosters, W. A. and Marchiori, E. and Oerlemans, A. Mining Clusters with Association Rules. The 3rd Symp. on Intelligent Data Analysis (IDA99), pages 39--50, Amsterdam, 1999.

[4801] Kubat, M. and Matwin, S. Addressing the Curse of Imbalanced Training Sets: One Sided Selection. ICML97, pages 179--186, Nashville, TN, 1997.

[4802] Kulkarni, S. R. and Lugosi, G. and Venkatesh, S. S. Learning Pattern Classification---A Survey. IEEE Tran. Inf. Theory, 44(6):2178--2206, 1998.

[4803] Kumar, V. and Joshi, M. V. and Han, E.-H. and Tan, P. N. and Steinbach, M. High Performance Data Mining. High Performance Computing for Computational Science (VECPAR 2002), pages 111-125. Springer, 2002.

[4804] Kuok, C. M. and Fu, A. and Wong, M. H. Mining Fuzzy Association Rules in Databases. ACM SIGMOD Record, 27(1):41--46, 1998.

[4805] Kuramochi, M. and Karypis, G. Discovering Frequent Geometric Subgraphs. ICDM02, pages 258--265, Maebashi City, Japan, 2002.

[4806] Kuramochi, M. and Karypis, G. Frequent Subgraph Discovery. ICDM01, pages 313--320, San Jose, CA, 2001.

[4807] Diane Lambert. What Use is Statistics for Massive Data?. ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, pages 54-62, 2000.

[4808] Landeweerd, G. and Timmers, T. and Gersema, E. and Bins, M. and Halic, M. Binary tree versus single level tree classification of white blood cells. Pattern Recognition, 16:571--577, 1983.

[4809] Langley, P. and Iba, W. and Thompson, K. An analysis of Bayesian classifiers. Proc. of the 10th National Conf. on Artificial Intelligence, pages 223--228, 1992.

[4810] Lee, W. and Stolfo, S. J. and Mok, K. W. Adaptive Intrusion Detection: A Data Mining Approach. Artificial Intelligence Review, 14(6):533--567, 2000.

[4811] Lent, B. and Swami, A. and Widom, J. Clustering Association Rules. ICDE97, pages 220--231, Birmingham, U.K, 1997.

[4812] Lewis, D. D. Naive Bayes at Forty: The Independence Assumption in Information Retrieval. Proc. of the 10th European Conf. on Machine Learning (ECML 1998), pages 4--15, 1998.

[4813] Li, W. and Han, J. and Pei, J. CMAR: Accurate and Efficient Classification Based on Multiple Class-association Rules. ICDM01, pages 369--376, San Jose, CA, 2001.

[4814] Liu, B. and Hsu, W. and Chen, S. Using General Impressions to Analyze Discovered Classification Rules. KDD97, pages 31--36, Newport Beach, CA, 1997.

[4815] Liu, B. and Hsu, W. and Ma, Y. Integrating Classification and Association Rule Mining. KDD98, pages 80--86, New York, NY, 1998.

[4816] Liu, B. and Hsu, W. and Ma, Y. Mining association rules with multiple minimum supports. KDD99, pages 125--134, San Diego, CA, 1999.

[4817] Liu, B. and Hsu, W. and Ma, Y. Pruning and Summarizing the Discovered Associations. KDD99, pages 125--134, San Diego, CA, 1999.

[4818] Mangasarian, O. Data Mining via Support Vector Machines. Technical report, Technical Report 01-05, Data Mining Institute, 2001.

[4819] Mannila, H. and Toivonen, H. and Verkamo, A. I. Discovery of Frequent Episodes in Event Sequences. Data Mining and Knowledge Discovery, 1(3):259--289, 1997.

[4820] Marcus, A. and Maletic, J. I. and Lin, K.-I. Ordinal association rules for error identification in data sets. CIKM01, pages 589--591, Atlanta, GA, 2001.

[4821] Margineantu, D. D. and Dietterich, T. G. Learning Decision Trees for Loss Minimization in Multi-Class Problems.Technical report, 99-30-03, Oregon State University, 1999.

[4822] Megiddo, N. and Srikant, R. Discovering Predictive Association Rules. KDD98, pages 274--278, New York, 1998.

[4823] Mehta, M. and Agrawal, R. and Rissanen, J. SLIQ: A Fast Scalable Classifier for Data Mining. Proc. of the 5th Intl. Conf. on Extending Database Technology, pages 18--32, Avignon, France, 1996.

[4824] Meo, R. and Psaila, G. and Ceri, S. A New SQL-like Operator for Mining Association Rules. VLDB96, pages 122--133, Bombay, India, 1996.

[4825] Michalski, R. S. A theory and methodology of inductive learning. Artificial Intelligence, 20:111--116, 1983.

[4826] Michalski, R. S. and Mozetic, I. and Hong, J. and Lavrac, N. The Multi-Purpose Incremental Learning System AQ15 and Its Testing Application to Three Medical Domains. Proc. of 5th National Conf. on Artificial Intelligence, Orlando, 1986.

[4827] Michie, D. and Spiegelhalter, D. J. and Taylor, C. C. Machine Learning, Neural and Statistical Classification. Ellis Horwood, Upper Saddle River, NJ, 1994.

[4828] Miller, R. J. and Yang, Y. Association Rules over Interval Data. SIGMOD97, pages 452--461, Tucson, AZ, 1997.

[4829] Mingers, J. An empirical comparison of pruning methods for decision tree induction. Machine Learning, 4:227--243, 1989.

[4830] Mingers, J. Expert Systems---Rule Induction with Statistical Data. J Operational Research Society, 38:39--47, 1987.

[4831] Mitchell, T. Machine Learning. McGraw-Hill, Boston, MA, 1997.

[4832] Moret, B. M. E. Decision Trees and Diagrams. Computing Surveys, 14(4):593--623, 1982.

[4833] Morimoto, Y. and Fukuda, T. and Matsuzawa, H. and Tokuyama, T. and Yoda, K. Algorithms for mining association rules for binary segmentations of huge categorical databases. VLDB98, pages 380--391, New York, 1998.

[4834] Mosteller, F. Association and Estimation in Contingency Tables. Journal of the American Statistical Association, 63:1--28, 1968.

[4835] Mueller, A. Fast sequential and parallel algorithms for association rule mining: A comparison. Technical report, CS-TR-3515, University of Maryland, 1995.

[4836] Muggleton, S. Foundations of Inductive Logic Programming. Prentice Hall, Englewood Cliffs, NJ, 1995.

[4837] Murthy, S. K. Automatic Construction of Decision Trees from Data: A Multi-Disciplinary Survey. Data Mining and Knowledge Discovery, 2(4):345--389, 1998.

[4838] Murthy, S. K. and Kasif, S. and Salzberg, S. A system for induction of oblique decision trees. J of Artificial Intelligence Research, 2:1--33, 1994.

[4839] Ng, R. T. and Lakshmanan, L. V. S. and Han, J. and Pang, A. Exploratory Mining and Pruning Optimizations of Constrained Association Rules. SIGMOD98, pages 13--24, Seattle, WA, 1998.

[4840] Niblett, T. Constructing decision trees in noisy domains. Proc. of the 2nd European Working Session on Learning, pages 67--78, Bled, Yugoslavia, 1987.

[4841] Niblett, T. and Bratko, I. Learning Decision Rules in Noisy Domains. In Bramer, M., editors, Research and Development in Expert Systems III, Cambridge, 1986. Cambridge University Press.

[4842] Omiecinski, E. Alternative Interest Measures for Mining Associations in Databases. IEEE Trans. on Knowledge and Data Engineering, 15(1):57--69, 2003.

[4843] Ozden, B. and Ramaswamy, S. and Silberschatz, A. Cyclic Association Rules. DE98, pages 412--421, Orlando, FL, 1998.

[4844] Ozgur, A. and Tan, P. N. and Kumar, V. RBA: An Integrated Framework for Regression based on Association Rules. SDM04, pages 210--221, Orlando, FL, 2004.

[4845] Park, J. S. and Chen, M.-S. and Yu, P. S. An effective hash-based algorithm for mining association rules. SIGMOD Record, 25(2):175--186, 1995.

[4846] Parr Rud, O. Data Mining Cookbook: Modeling Data for Marketing, Risk and Customer Relationship Management. John Wiley & Sons, New York, NY, 2001.

[4847] Parthasarathy, S. and Coatney, M. Efficient Discovery of Common Substructures in Macromolecules. ICDM02, pages 362--369, Maebashi City, Japan, 2002.

[4848] Pasquier, N. and Bastide, Y. and Taouil, R. and Lakhal, L. Discovering frequent closed itemsets for association rules. Proc. of the 7th Intl. Conf. on Database Theory (ICDT'99), pages 398--416, Jerusalem, Israel, 1999.

[4849] Pattipati, K. R. and Alexandridis, M. G. Application of heuristic search and information theory to sequential fault diagnosis. IEEE Trans. on Systems, Man, and Cybernetics, 20(4):872--887, 1990.

[4850] Pei, J. and Han, J. and Lu, H. J. and Nishio, S. and Tang, S. H-Mine: Hyper-Structure Mining of Frequent Patterns in Large Databases. ICDM01, pages 441--448, San Jose, CA, 2001.

[4851] Pei, J. and Han, J. and Mortazavi-Asl, B. and Chen, Q. and Dayal, U. and Hsu, M. PrefixSpan: Mining Sequential Patterns efficiently by prefix-projected pattern growth. Proc of the 17th Intl. Conf. on Data Engineering, Heidelberg, Germany, 2001.

[4852] Pei, J. and Han, J. and Mortazavi-Asl, B. and Zhu, H. Mining Access Patterns Efficiently from Web Logs. PAKDD00, pages 396--407, Kyoto, Japan, 2000.

[4853] Piatetsky-Shapiro, G. Discovery, Analysis and Presentation of Strong Rules. In G. Piatetsky-Shapiro and W. Frawley, editors, Knowledge Discovery in Databases, pages 229--248. MIT Press, Cambridge, MA, 1991.

[4854] Potter, C. and Klooster, S. and Steinbach, M. and Tan, P. N. and Kumar, V. and Shekhar, S. and Carvalho, C. Understanding Global Teleconnections of Climate to Regional Model Estimates of Amazon Ecosystem Carbon Fluxes. Global Change Biology, 10(5):693--703, 2004.

[4855] Potter, C. and Klooster, S. and Steinbach, M. and Tan, P. N. and Kumar, V. and Shekhar, S. and Myneni, R. and Nemani, R. Global Teleconnections of Ocean Climate to Terrestrial Carbon Flux. J. Geophysical Research, 108(D17), 2003.

[4856] Provost, F. J. and Fawcett, T. Analysis and Visualization of Classifier Performance: Comparison under Imprecise Class and Cost Distributions. KDD97, pages 43--48, Newport Beach, CA, 1997.

[4857] Pyle, D. Business Modeling and Data Mining. Morgan Kaufmann, San Francisco, CA, 2003.

[4858] Quinlan, J. R. C4.5: Programs for Machine Learning. Morgan-Kaufmann Publishers, San Mateo, CA, 1993.

[4859] Quinlan, J. R. Discovering rules by induction from large collection of examples. In Michie, D., editors, Expert Systems in the Micro Electronic Age. Edinburgh University Press, Edinburgh, UK, 1979.

[4860] Quinlan, J. R. Simplifying Decision Trees. Intl. J. Man-Machine Studies, 27:221--234, 1987.

[4861] Quinlan, J. R. and Rivest, R. L. Inferring Decision Trees Using the Minimum Description Length Principle. Information and Computation, 80(3):227--248, 1989.

[4862] Naren Ramakrishnan and Ananth Grama. Data Mining: From Serendipity to Science---Guest Editors' Introduction. IEEE Computer, 32(8):34-37, 1999.

[4863] Ramkumar, G. D and Ranka, S. and Tsur, S. Weighted Association Rules: Model and Algorithm. http://www.cs.ucla.edu/czdemo/tsur/, 1997.

[4864] Ramoni, M. and Sebastiani, P. Robust Bayes classifiers. Artificial Intelligence, 125:209--226, 2001.

[4865] van Rijsbergen, C. J. Information Retrieval. Butterworth-Heinemann, Newton, MA, 1978.

[4866] Roiger, R. and Geatz, M. Data Mining: A Tutorial Based Primer. Addison-Wesley, 2002.

[4867] Safavian, S. R. and Landgrebe, D. A Survey of Decision Tree Classifier Methodology. IEEE Trans. Systems, Man and Cybernetics, 22:660--674, 1998.

[4868] Sarawagi, S. and Thomas, S. and Agrawal, R. Integrating Mining with Relational Database Systems: Alternatives and Implications. SIGMOD98, pages 343--354, Seattle, WA, 1998.

[4869] Satou, K. and Shibayama, G. and Ono, T. and Yamamura, Y. and Furuichi,E. and Kuhara, S. and Takagi, T. Finding Association Rules on Heterogeneous Genome Data. Proc. of the Pacific Symp. on Biocomputing, pages 397--408, Hawaii, 1997.

[4870] Savasere, A. and Omiecinski, E. and Navathe, S. An efficient algorithm for mining association rules in large databases. Proc. of the 21st Int. Conf. on Very Large Databases (VLDB`95), pages 432-444, Zurich, Switzerland, 1995.

[4871] A. Savasere and E. Omiecinski and S. Navathe. Mining for Strong Negative Associations in a Large Database of Customer Transactions. ICDE98, pages 494--502, Orlando, Florida, 1998.

[4872] Schaffer, C. Overfitting avoidence as bias. Machine Learning, 10:153--178, 1993.

[4873] Schapire, R. E. The Boosting Approach to Machine Learning: An Overview. MSRI Workshop on Nonlinear Estimation and Classification, 2002.

[4874] Schölkopf, B. and Smola, A. J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, 2001.

[4875] Schuermann, J. and Doster, W. A decision-theoretic approach in hierarchical classifier design. Pattern Recognition, 17:359--369, 1984.

[4876] Advances in Distributed and Parallel Knowledge Discovery. AAAI Press, 2002.

[4877] Advances in Knowledge Discovery and Data Mining.. AAAI/MIT Press, 1996.

[4878] Rakesh Agrawal and Johannes Gehrke and Dimitrios Gunopulos and Prabhakar Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. In Laura M. Haas and Ashutosh Tiwary, editors, SIGMOD98, pages 94--105, Seattle, Washington, 1998. ACM Press.

[4879] Ming-Syan Chen and Jiawei Han and Philip S. Yu. Data Mining: An Overview from a Database Perspective. IEEE Transactions on Knowledge abd Data Engineering, 8(6):866-883, 1996.

[4880] Seno, M. and Karypis, G. LPMiner: An Algorithm for Finding Frequent Itemsets Using Length-Decreasing Support Constraint. ICDM01, pages 505--512, San Jose, CA, 2001.

[4881] Seno, M. and Karypis, G. SLPMiner: An Algorithm for Finding Frequent Sequential Patterns Using Length-Decreasing Support Constraint. ICDM02, pages 418--425, Maebashi City, Japan, 2002.

[4882] Shafer, J. C. and Agrawal, R. and Mehta, M. SPRINT: A Scalable Parallel Classifier for Data Mining. VLDB96, pages 544--555, Bombay, India, 1996.

[4883] Shintani, T. and Kitsuregawa, M. Hash based parallel algorithms for mining association rules. Proc of the 4th Intl. Conf. on Parallel and Distributed Info. Systems, pages 19--30, Miami Beach, FL, 1996.

[4884] Silberschatz, A. and Tuzhilin, A. What makes patterns interesting in knowledge discovery systems. IEEE Trans. on Knowledge and Data Engineering, 8(6):970--974, 1996.

[4885] Silverstein, C. and Brin, S. and Motwani, R. Beyond market baskets: Generalizing association rules to dependence rules. Data Mining and Knowledge Discovery, 2(1):39--68, 1998.

[4886] Simpson, E.-H. The Interpretation of Interaction in Contingency Tables. Journal of the Royal Statistical Society, B(13):238--241, 1951.

[4887] Singh, L. and Chen, B. and Haight, R. and Scheuermann, P. An Algorithm for Constrained Association Rule Mining in Semi-structured Data. PAKDD99, pages 148--158, Beijing, China, 1999.

[4888] Smyth, P. and Goodman, R. M. An Information Theoretic Approach to Rule Induction from Databases. IEEE Trans. on Knowledge and Data Engineering, 4(4):301--316, 1992.

[4889] Padhraic Smyth. Breaking out of the Black-Box: Research Challenges in Data Mining. DMKD01, 2001.

[4890] Padhraic Smyth and Daryl Pregibon and Christos Faloutsos. Data-driven evolution of data mining algorithms. Communications of the ACM, 45(8):33-37, 2002.

[4891] Srikant, R. and Agrawal, R. Mining Generalized Association Rules. VLDB95, pages 407--419, Zurich, Switzerland, 1995.

[4892] Srikant, R. and Agrawal, R. Mining Quantitative Association Rules in Large Relational Tables. SIGMOD96, pages 1--12, Montreal, Canada, 1996.

[4893] Srikant, R. and Agrawal, R. Mining Sequential Patterns: Generalizations and Performance Improvements. Proc. of the 5th Intl Conf. on Extending Database Technology (EDBT'96), pages 18--32, Avignon, France, 1996.

[4894] Srikant, R. and Vu, Q. and Agrawal, R. Mining Association Rules with Item Constraints. KDD97, pages 67--73, Newport Beach, CA, 1997.

[4895] Steinbach, M. and Tan, P. N. and Kumar, V. Support Envelopes: A Technique for Exploring the Structure of Association Patterns. KDD04, pages 296--305, Seattle, WA, 2004.

[4896] Steinbach, M. and Tan, P. N. and Xiong, H. and Kumar, V. Extending the Notion of Support. KDD04, pages 689--694, Seattle, WA, 2004.

[4897] Suzuki, E. Autonomous Discovery of Reliable Exception Rules. KDD97, pages 259--262, Newport Beach, CA, 1997.

[4898] Tan, P. N. and Kumar, V. Mining Association Patterns in Web Usage Data. Proc. of the Intl. Conf. on Advances in Infrastructure for e-Business, e-Education, e-Science and e-Medicine on the Internet, L'Aquila, Italy, 2002.

[4899] Tan, P. N. and Kumar, V. and Srivastava, J. Indirect Association: Mining Higher Order Dependencies in Data. PKDD00, pages 632--637, Lyon, France, 2000.

[4900] Tan, P. N. and Kumar, V. and Srivastava, J. Selecting the Right Interestingness Measure for Association Patterns. KDD02, pages 32--41, Edmonton, Canada, 2002.

[4901] Tan, P. N. and Steinbach, M. and Kumar, V. and Klooster, S. and Potter, C. and Torregrosa, A. Finding Spatio-Temporal Patterns in Earth Science Data. KDD 2001 Workshop on Temporal Data Mining, San Francisco, CA, 2001.

[4902] Tax, D. M. J. and Duin, R. P. W. Using Two-Class Classifiers for Multiclass Classification. Proc. of the 16th Intl. Conf. on Pattern Recognition (ICPR 2002), pages 124--127, Quebec, Canada, 2002.

[4903] Teng, W. G. and Hsieh, M. J. and Chen, M.-S. On the Mining of Substitution Rules for Statistically Dependent Items. ICDM02, pages 442--449, Maebashi City, Japan, 2002.

[4904] Toivonen, H and Klemettinen, M. and Ronkainen, P. and Hatonen, K. and Mannila, H. Pruning and Grouping Discovered Association Rules. ECML-95 Workshop on Statistics, Machine Learning and Knowledge Discovery in Databases, pages 47 -- 52, Heraklion, Greece, 1995.

[4905] Toivonen, H. Sampling Large Databases for Association Rules. VLDB96, pages 134--145, Bombay, India, 1996.

[4906] Tsur, S. and Ullman, J. and Abiteboul, S. and Clifton, C. and Motwani, R. and Nestorov, S. and Rosenthal, A. Query Flocks: A Generalization of Association Rule Mining. SIGMOD98, pages 1--12, Seattle, WA, 1998.

[4907] Tung, Anthony and Lu, H. J. and Han, Jiawei and Feng, Ling. Breaking the Barrier of Transactions: Mining Inter-Transaction Association Rules. KDD99, pages 297--301, San Diego, CA, 1999.

[4908] Utgoff, P. E. and Brodley, C. E. An incremental method for finding multivariate splits for decision trees. ICML90, pages 58--65, Austin, TX, 1990.

[4909] Vapnik, V. Statistical Learning Theory. John Wiley & Sons, New York, 1998.

[4910] Vapnik, V. The Nature of Statistical Learning Theory. Springer Verlag, New York, 1995.

[4911] Wang, H. and Zaniolo, C. CMP: A Fast Decision Tree Classifier Using Multivariate Predictions. ICDE00, pages 449--460, San Diego, CA, 2000.

[4912] Wang, K. and He, Y. and Han, J. Mining Frequent Itemsets Using Support Constraints. VLDB00, pages 43--52, Cairo, Egypt, 2000.

[4913] Wang, K. and Tay, S. H. and Liu, B. Interestingness-Based Interval Merger for Numeric Association Rules. KDD98, pages 121--128, New York, NY, 1998.

[4914] Wang, Q. R. and Suen, C. Y. Large tree classifier with heuristic search and global training. IEEE Trans. on Pattern Analysis and Machine Intelligence, 9(1):91--102, 1987.

[4915] Webb, A. R. Statistical Pattern Recognition. John Wiley & Sons, 2nd edition, 2002.

[4916] Webb, G. I. Discovering associations with numeric variables. KDD01, pages 383--388, San Francisco, CA, 2001.

[4917] Webb, G. I. Preliminary investigations into statistically valid exploratory rule discovery. Proc. of the Australasian Data Mining Workshop (AusDM03), Canberra, Australia, 2003.

[4918] Weiss, G. M. Mining with Rarity: A Unifying Framework. SIGKDD Explorations, 6(1):7--19, 2004.

[4919] Witten, I. H. and Frank, E. Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, 1999.

[4920] Wu, X. and Zhang, C. and Zhang, S. Mining Both Positive and Negative Association Rules. ACM Trans. on Information Systems, 22(3):381--405, 2004.

[4921] Xindong Wu and Philip S. Yu and Gregory Piatetsky-Shapiro. Data Mining: How Research Meets Practical Development?. Knowledge and Information Systems, 5(2):248-261, 2003.

[4922] Xiong, H. and He, X. and Ding, C. and Zhang, Y. and Kumar, V. and Holbrook, S. R. Identification of Functional Modules in Protein Complexes via Hyperclique Pattern Discovery. Proc. of the Pacific Symposium on Biocomputing, (PSB 2005), Maui, 2005.

[4923] Xiong, H. and Shekhar, S. and Tan, P. N. and Kumar, V. Exploiting a Support-based Upper Bound of Pearson's Correlation Coefficient for Efficiently Identifying Strongly Correlated Pairs. KDD04, pages 334-343, Seattle, WA, 2004.

[4924] Xiong, H. and Steinbach, M. and Tan, P. N. and Kumar, V. HICAP: Hierarchial Clustering with Pattern Preservation. SDM04, pages 279--290, Orlando, FL, 2004.

[4925] Xiong, H. and Tan, P. N. and Kumar, V. Mining Strong Affinity Association Patterns in Data Sets with Skewed Support Distribution. ICDM03, pages 387--394, Melbourne, FL, 2003.

[4926] Yan, X. and Han, J. gSpan: Graph-based Substructure Pattern Mining. ICDM02, pages 721--724, Maebashi City, Japan, 2002.

[4927] Yang, C. and Fayyad, U. M. and Bradley, P. S. Efficient discovery of error-tolerant frequent itemsets in high dimensions. KDD01, pages 194--203, San Francisco, CA, 2001.

[4928] Zadrozny, B. and Langford, J. C. and Abe, N. Cost-Sensitive Learning by Cost-Proportionate Example Weighting. ICDM03, pages 435--442, Melbourne, FL, 2003.

[4929] Zaki, M. J. Efficiently mining frequent trees in a forest. KDD02, pages 71--80, Edmonton, Canada, 2002.

[4930] Zaki, M. J. Generating Non-Redundant Association Rules. KDD00, pages 34--43, Boston, MA, 2000.

[4931] Zaki, M. J. Parallel and Distributed Association Mining: A Survey. IEEE Concurrency, special issue on Parallel Mechanisms for Data Mining, 7(4):14--25, 1999.

[4932] Zaki, M. J. and Orihara, M. Theoretical foundations of association rules. DMKD98, Seattle, WA, 1998.

[4933] Zaki, M. J. and Parthasarathy, S. and Ogihara, M. and Li, W. New Algorithms for Fast Discovery of Association Rules. KDD97, pages 283--286, Newport Beach, CA, 1997.

[4934] Zhang, H. and Padmanabhan, B. and Tuzhilin, A. On the Discovery of Significant Statistical Quantitative Rules. KDD04, pages 374--383, Seattle, WA, 2004.

[4935] Zhang, Z. and Lu, Y. and Zhang, B. An Effective Partioning-Combining Algorithm for Discovering Quantitative Association Rules. PAKDD97, Singapore, 1997.

[4936] Data Mining for Scientific and Engineering Applications. Kluwer Academic Publishers, 2001.

[4937] "C. Clifton and M. Kantarcioglu and J. Vaidya. Defining privacy for data mining. National Science Foundation Workshop on Next Generation Data Mining, pages 126--133, Baltimore, MD, 2002.

[4938] Large-Scale Parallel Data Mining. Springer, 2002.

[4939] Rakesh Agrawal and Ramakrishnan Srikant. Privacy-preserving data mining. SIGMOD00, pages 439--450, Dallas, Texas, 2000. ACM Press.

[4940] Mark S. Aldenderfer and Roger K. Blashfield. Cluster Analysis. Sage Publications, Los Angeles, 1985.

[4941] Michael R. Anderberg. Cluster Analysis for Applications. Academic Press, New York, 1973.

[4510] Andrews, R. and Diederich, J. and Tickle, A. A Survey and Critique of Techniques For Extracting Rules From Trained Artificial Neural Networks. Knowledge Based Systems, 8(6):373--389, 1995.

[4942] Phipps Arabie and Lawrence Hubert and G. De Soete. An overview of combinatorial data analysis. In P. Arabie and L. Hubert and G. De Soete, editors, Clustering and Classification, pages 188--217. World Scientific, Singapore, 1996.

[4943] G. Ball and D. Hall. A Clustering Technique for Summarizing Multivariate Data. Behavior Science, 12:153--155, 1967.

[4944] A. Banerjee and S. Merugu and I. S. Dhillon and J. Ghosh. Clustering with Bregman Divergences. In Michael W. Berry and Umeshwar Dayal and Chandrika Kamath and David Skillicorn, editors, SDM04, pages 234--245, Lake Buena Vista, FL, 2004.

[4945] Hans Hermann Bock and Edwin Diday. Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data (Studies in Classification, Data Analysis, and Knowledge Organization). Springer-Verlag Telos, 2000.

[4946] Ingwer Borg and Patrick Groenen. Modern Multidimensional Scaling---Theory and Applications. Springer-Verlag, 1997.

[4947] William G. Cochran. Sampling Techniques. John Wiley & Sons, 3rd edition, 1977.

[4948] James W. Demmel. Applied Numerical Linear Algebra. Society for Industrial & Applied Mathematics, 1997.

[4949] Pedro Domingos and Geoff Hulten. Mining high-speed data streams. KDD00, pages 71--80, Boston, Massachusetts, 2000. ACM Press.

[4950] Gaohua Gu, Feifang Hu and Huan Liu. Sampling and Its Application in Data Mining: A Survey. Technical report, TRA6/00, National University of Singapore, Singapore, 2000.

[4951] C. Giannella and J. Han and J. Pei and X. Yan and P. S. Yu. Mining Frequent Patterns in Data Streams at Multiple Time Granularities. In H. Kargupta and A. Joshi and K. Sivakumar and Y. Yesha, editors, Next Generation Data Mining, pages 191-212. AAAI/MIT, 2003.

[4952] D. J. Hand. Statistics and the Theory of Measurement. Journal of the Royal Statistical Society: Series A (Statistics in Society), 159(3):445-492, 1996.

[4953] Hillol Kargupta and Souptik Datta and Qi Wang and Krishnamoorthy Sivakumar. On the Privacy Preserving Properties of Random Data Perturbation Techniques. ICDM03, pages 99-106, Melbourne, Florida, 2003. IEEE Computer Society.

[4954] Daniel Kifer and Shai Ben-David and Johannes Gehrke. Detecting Change in Data Streams. VLDB04, pages 180-191, Toronto, Canada, 2004. Morgan Kaufmann.

[4955] David Krantz and R. Duncan Luce and Patrick Suppes and Amos Tversky. Foundations of Measurements: Volume 1: Additive and polynomial representations. Academic Press, New York, 1971.

[4956] Martin H. C. Law and Nan Zhang and Anil K. Jain. Nonlinear Manifold Learning for Data Streams.In Michael W. Berry and Umeshwar Dayal and Chandrika Kamath and David Skillicorn, editors, SDM04, Lake Buena Vista, Florida, 2004. SIAM.

[4957] B. W. Lindgren. Statistical Theory. CRC Press, 1993.

[4958] R. Duncan Luce and David Krantz and Patrick Suppes and Amos Tversky. Foundations of Measurements: Volume 3: Representation, Axiomatization, and Invariance. Academic Press, New York, 1990.

[4959] F. Olken and D. Rotem. Random Sampling from Databases---A Survey. Statistics & Computing, 5(1):25--42, 1995.

[4960] Jason Osborne. Notes on the Use of Data Transformations. Practical Assessment, Research & Evaluation, 28(6), 2002.

[4961] Christopher R. Palmer and Christos Faloutsos. Density biased sampling: An improved method for data mining and clustering. ACM SIGMOD Record, 29(2):82--92, 2000.

[4962] Spiros Papadimitriou and Anthony Brockwell and Christos Faloutsos. Adaptive, unsupervised stream mining. VLDB Journal, 13(3):222-239, 2004.

[4963] Foster J. Provost and David Jensen and Tim Oates. Efficient Progressive Sampling. KDD99, pages 23--32, 1999.

[4964] Stanley Smith Stevens. Measurement. In Gary Michael Maranell, editors, Scaling: A Sourcebook for Behavioral Scientists, pages 22--41. Aldine Publishing Co., Chicago, 1974.

[4965] Stanley Smith Stevens. On the Theory of Scales of Measurement. Science, 103(2684):677--680, 1946.

[4966] Patrick Suppes and David Krantz and R. Duncan Luce and Amos Tversky. Foundations of Measurements: Volume 2: Geometrical, Threshold, and Probabilistic Representations. Academic Press, New York, 1989.

[4967] Hannu Toivonen. Sampling Large Databases for Association Rules. In T. M. Vijayaraman and Alejandro P. Buchmann and C. Mohan and Nandlal L. Sarda, editors, VLDB96, pages 134--145, 1996. Morgan Kaufman.

[4968] John W. Tukey. On the Comparative Anatomy of Transformations. Annals of Mathematical Statistics, 28(3):602--632, 1957.

[4969] Vassilios S. Verykios and Elisa Bertino and Igor Nai Fovino and Loredana Parasiliti Provenza and Yucel Saygin and Yannis Theodoridis. State-of-the-art in privacy preserving data mining. SIGMOD Record, 33(1):50--57, 2004.

[4970] Richard Y. Wang and Mostapha Ziad and Yang W. Lee and Y. Richard Wang. Data Quality of The Kluwer International Series on Advances in Database Systems, Volume 23. Kluwer Academic Publishers, 2001.

[4971] Mohammed Javeed Zaki and Srinivasan Parthasarathy and Wei Li and Mitsunori Ogihara. Evaluation of Sampling for Data Mining of Association Rules. Technical report, TR617, Rensselaer Polytechnic Institute, 1996.

[4972] Feature Extraction, Construction and Selection: A Data Mining Perspective of Kluwer International Series in Engineering and Computer Science, 453. Kluwer Academic Publishers, 1998.

[4973] MIT Total Data Quality Management Program. web.mit.edu/tdqm/www/index.shtml, 2003.

[4974] Mihael Ankerst and Markus M. Breunig and Hans-Peter Kriegel and Jörg Sander. OPTICS: Ordering Points To Identify the Clustering Structure. In Alex Delis and Christos Faloutsos and Shahram Ghandeharizadeh, editors, SIGMOD99, pages 49--60, Philadelphia, Pennsylvania, 1999. ACM Press.

[4975] Daniel Barbará. Requirements for clustering data streams. SIGKDD Explorations Newsletter, 3(2):23--27, 2002.

[4976] Pavel Berkhin. Survey Of Clustering Data Mining Techniques. Technical report, Accrue Software, San Jose, CA, 2002.

[4977] J. Bilmes. A Gentle Tutorial on the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models. Technical report, ICSI-TR-97-021, University of California at Berkeley, 1997.

[4978] C. M. Bishop and M. Svensen and C. K. I. Williams. GTM: A principled alternative to the self-organizing map. In C. von der Malsburg and W. von Seelen and J. C. Vorbruggen and B. Sendhoff, editors, Artificial Neural Networks---ICANN96. Intl. Conf, Proc., pages 165-170. Springer-Verlag, Berlin, Germany, 1996.

[4979] Avrim Blum and Pat Langley. Selection of Relevant Features and Examples in Machine Learning. Artificial Intelligence, 97(1--2):245--271, 1997.

[4980] Daniel Boley. Principal Direction Divisive Partitioning. Data Mining and Knowledge Discovery, 2(4):325-344, 1998.

[4981] Paul S. Bradley and Usama M. Fayyad. Refining Initial Points for K-Means Clustering. In Jude W. Shavlik, editors, ICML98, pages 91--99, Madison, WI, 1998. Morgan Kaufmann Publishers Inc.

[4982] Paul S. Bradley and Usama M. Fayyad and Cory Reina. Scaling Clustering Algorithms to Large Databases. In Rakesh Agrawal and Paul Stolorz and Gregory Piatetsky-Shapiro, editors, KDD98, pages 9--15, New York City, 1998. AAAI Press.

[4983] Peter Cheeseman and James Kelly and Matthew Self and John Stutz and Will Taylor and Don Freeman. AutoClass: a Bayesian classification system. Readings in knowledge acquisition and learning: automating the construction and improvement of expert systems, pages 431--441. Morgan Kaufmann Publishers Inc., 1993.

[4984] James Dougherty and Ron Kohavi and Mehran Sahami. Supervised and Unsupervised Discretization of Continuous Features. ICML95, pages 194--202, 1995.

[4985] Duda, Robert O. and Hart, Peter E. and Stork, David G. Pattern Classification. John Wiley & Sons, Inc., New York, Second edition, 2001.

[4986] Tapio Elomaa and Juho Rousu. General and Efficient Multisplitting of Numerical Attributes. Machine Learning, 36(3):201--244, 1999.

[4987] Levent Ertöz and Michael Steinbach and Vipin Kumar. A New Shared Nearest Neighbor Clustering Algorithm and its Applications. Workshop on Clustering High Dimensional Data and its Applications, Proc. of Text Mine'01, First SIAM Intl. Conf. on Data Mining, Chicago, IL, USA, 2001.

[4988] Levent Ertöz and Michael Steinbach and Vipin Kumar. Finding Clusters of Different Sizes, Shapes, and Densities in Noisy, High Dimensional Data. SDM03, San Francisco, 2003. SIAM.

[4989] Martin Ester and Hans-Peter Kriegel and Jörg Sander and Michael Wimmer and Xiaowei Xu. Incremental Clustering for Mining in a Data Warehousing Environment. In Ashish Gupta and Oded Shmueli and Jennifer Widom, editors, VLDB98, pages 323--333, New York City, 1998. Morgan Kaufmann.

[4990] Martin Ester and Hans-Peter Kriegel and Jorg Sander and Xiaowei Xu. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Evangelos Simoudi and Jiawei Han and Usama M. Fayyad, editors, KDD96, pages 226--231, Portland, Oregon, 1996. AAAI Press.

[4991] Brian S. Everitt and Sabine Landau and Morven Leese. Cluster Analysis. Arnold Publishers, London, Fourth edition, 2001.

[4992] U. M. Fayyad and K. B. Irani. Multi-interval discretization of continuousvalued attributes for classification learning. Proc. 13th Int. Joint Conf. on Artificial Intelligence, pages 1022--1027, 1993. Morgan Kaufman.

[4993] Douglas Fisher. Iterative Optimization and Simplification of Hierarchical Clusterings. Journal of Artificial Intelligence Research, 4:147--179, 1996.

[4994] Douglas Fisher and Pat Langley. Conceptual clustering and its relation to numerical taxonomy. Artificial Intelligence and Statistics, :77--116, 1986.

[4995] Chris Fraley and Adrian E. Raftery. How Many Clusters? Which Clustering Method? Answers Via Model-Based Cluster Analysis. The Computer Journal, 41(8):578--588, 1998.

[4996] Venkatesh Ganti and Johannes Gehrke and Raghu Ramakrishnan. CACTUS--Clustering Categorical Data Using Summaries. KDD99, pages 73--83, 1999. ACM Press.

[4997] Allen Gersho and Robert M. Gray. Vector Quantization and Signal Compression, volume 159 of Kluwer International Series in Engineering and Computer Science. Kluwer Academic Publishers, 1992.

[4998] Joydeep Ghosh. Scalable Clustering Methods for Data Mining. In Nong Ye, editors, Handbook of Data Mining, pages 247--277. Lawrence Ealbaum Assoc, 2003.

[4999] David Gibson and Jon M. Kleinberg and Prabhakar Raghavan. Clustering Categorical Data: An Approach Based on Dynamical Systems. VLDB Journal, 8(3--4):222--236, 2000.

[5000] K. C. Gowda and G. Krishna. Agglomerative Clustering Using the Concept of Mutual Nearest Neighborhood. Pattern Recognition, 10(2):105--112, 1978.

[5001] Sudipto Guha and Adam Meyerson and Nina Mishra and Rajeev Motwani and Liadan O'Callaghan. Clustering Data Streams: Theory and Practice. IEEE Transactions on Knowledge and Data Engineering, 15(3):515--528, 2003.

[5002] Sudipto Guha and Rajeev Rastogi and Kyuseok Shim. CURE: An Efficient Clustering Algorithm for Large Databases. In Laura M. Haas and Ashutosh Tiwary, editors, SIGMOD98, pages 73--84, 1998. ACM Press.

[5003] Sudipto Guha and Rajeev Rastogi and Kyuseok Shim. ROCK: A Robust Clustering Algorithm for Categorical Attributes. In Masaru Kitsuregawa and Leszek Maciaszek and Mike Papazoglou and Calton Pu, editors, ICDE99, pages 512--521, 1999. IEEE Computer Society.

[5004] Maria Halkidi and Yannis Batistakis and Michalis Vazirgiannis. Cluster validity methods: part I. SIGMOD Record (ACM Special Interest Group on Management of Data), 31(2):40--45, 2002.

[5005] Maria Halkidi and Yannis Batistakis and Michalis Vazirgiannis. Clustering validity checking methods: part II. SIGMOD Record (ACM Special Interest Group on Management of Data), 31(3):19--27, 2002.

[5006] Greg Hamerly and Charles Elkan. Alternatives to the k-means algorithm that find better clusterings. CIKM02, pages 600--607, McLean, Virginia, 2002. ACM Press.

[5007] Jiawei Han and Micheline Kamber and Anthony Tung. Spatial Clustering Methods in Data Mining: A review. In Harvey J. Miller and Jiawei Han, editors, Geographic Data Mining and Knowledge Discovery, pages 188--217. Taylor and Francis, London, 2001.

[5008] John Hartigan. Clustering Algorithms. Wiley, New York, 1975.

[5009] Alexander Hinneburg and Daniel A. Keim. Optimal Grid-Clustering: Towards Breaking the Curse of Dimensionality in High-Dimensional Clustering. In M. P. Atkinson and M. E. Orlowska and P. Valduriez and S. B. Zdonik and M. L. Brodie, editors, VLDB99, pages 506--517, Edinburgh, Scotland, UK, 1999. Morgan Kaufmann.

[5010] Alexander Hinneburg and Daniel. A. Keim. An Efficient Approach to Clustering in Large Multimedia Databases with Noise. In Rakesh Agrawal and Paul Stolorz, editors, KDD98, pages 58--65, New York City, 1998. AAAI Press.

[5011] F. Hussain and H. Liu and C. L. Tan and M. Dash. TRC6/99: Discretization: an enabling technique. Technical report, National University of Singapore, Singapore, 1999.

[5012] Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data of Prentice Hall Advanced Reference Series. Prentice Hall, 1988. Book available online at http://www.cse.msu.edu/ : jain/Clustering_Jain_Dubes.pdf.

[5013] Anil K. Jain and M. Narasimha Murty and Patrick J. Flynn. Data clustering: A review. ACM Computing Surveys, 31(3):264--323, 1999.

[5014] Nicolas Jardine and Robin Sibson. Mathematical Taxonomy. Wiley, New York, 1971.

[5015] R. A. Jarvis and E. A. Patrick. Clustering Using a Similarity Measure Based on Shared Nearest Neighbors. IEEE Transactions on Computers, C-22(11):1025-1034, 1973.

[5016] I. T. Jolliffe. Principal Component Analysis. Springer Verlag, 2nd edition, 2002.

[5017] Istvan Jonyer and Diane J. Cook and Lawrence B. Holder. Graph-based hierarchical conceptual clustering. Journal of Machine Learning Research, 2:19--43, 2002.

[5018] Karin Kailing and Hans-Peter Kriegel and Peer Kröger. Density-Connected Subspace Clustering for High-Dimensional Data. In Michael W. Berry and Umeshwar Dayal and Chandrika Kamath and David B. Skillicorn, editors, SDM04, pages 428--439, Lake Buena Vista, Florida, 2004. SIAM.

[5019] George Karypis and Eui-Hong Han and Vipin Kumar. CHAMELEON: A Hierarchical Clustering Algorithm Using Dynamic Modeling. IEEE Computer, 32(8):68--75, 1999.

[5020] George Karypis and Eui-Hong Han and Vipin Kumar. Multilevel Refinement for Hierarchical Clustering. Technical report, TR 99-020, University of Minnesota, Minneapolis, MN, 1999.

[5021] George Karypis and Vipin Kumar. Multilevel k-way Partitioning Scheme for Irregular Graphs. Journal of Parallel and Distributed Computing, 48(1):96-129, 1998.

[5022] Leonard Kaufman and Peter J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster Analysis of Wiley Series in Probability and Statistics. John Wiley and Sons, New York, 1990.

[5023] Jon M. Kleinberg. An Impossibility Theorem for Clustering. Proc. of the 16th Annual Conf. on Neural Information Processing Systems, 2002.

[5024] Ron Kohavi and George H. John. Wrappers for Feature Subset Selection. Artificial Intelligence, 97(1--2):273--324, 1997.

[5025] Teuvo Kohonen and Thomas S. Huang and Manfred R. Schroeder. Self-Organizing Maps. Springer-Verlag, 2000.

[5026] Joseph B. Kruskal and Eric M. Uslaner. Multidimensional Scaling. Sage Publications, 1978.

[5027] Bjornar Larsen and Chinatsu Aone. Fast and Effective Text Mining Using Linear-Time Document Clustering. KDD99, pages 16--22, San Diego, California, 1999. ACM Press.

[5028] H. Liu and H. Motoda and L. Yu. Feature Extraction, Selection, and Construction. In Nong Ye, editors, The Handbook of Data Mining, pages 22--41. Lawrence Erlbaum Associates, Inc., Mahwah, NJ, 2003.

[5029] Huan Liu and Hiroshi Motoda. Feature Selection for Knowledge Discovery and Data Mining of Kluwer International Series in Engineering and Computer Science, 454. Kluwer Academic Publishers, 1998.

[5030] J. MacQueen. Some methods for classification and analysis of multivariate observations. In Le Cam, L. M. and Neyman, J., editors, Proc. of the 5th Berkeley Symp. on Mathematical Statistics and Probability, pages 281--297, 1967. University of California Press.

[5031] Michalski, R. S. and Stepp, R. E. Automated Construction of Classifications: Conceptual Clustering Versus Numerical Taxonomy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 5(4):396--409, 1983.

[5032] Glen W. Milligan. Clustering Validation: Results and Implications for Applied Analyses. In P. Arabie and L. Hubert and G. De Soete, editors, Clustering and Classification, pages 345--375. World Scientific, Singapore, 1996.

[5033] Boris Mirkin. Mathematical Classification and Clustering, volume 11 of Nonconvex Optimization and Its Applications. Kluwer Academic Publishers, 1996.

[5034] Nina Mishra and Dana Ron and Ram Swaminathan. A New Conceptual Clustering Framework. Machine Learning Journal, 56(1--3):115--151, 2004.

[5035] Luis Carlos Molina and Lluis Belanche and Angela Nebot. Feature Selection Algorithms: A Survey and Experimental Evaluation. ICDM02, 2002.

[5036] Fionn Murtagh. Clustering massive data sets. In J. Abello and P. M. Pardalos and M. G. C. Reisende, editors, Handbook of Massive Data Sets. Kluwer, 2000.

[5037] Fionn Murtagh. Multidimensional Clustering Algorithms. Physica-Verlag, Heidelberg and Vienna, 1985.

[5038] Harsha Nagesh and Sanjay Goil and Alok Choudhary. Parallel Algorithms for Clustering High-Dimensional Large-Scale Datasets. In Robert L. Grossman and Chandrika Kamath and Philip Kegelmeyer and Vipin Kumar and Raju Namburu, editors, Data Mining for Scientific and Engineering Applications, pages 335--356. Kluwer Academic Publishers, Dordrecht, Netherlands, 2001.

[5039] Raymond T. Ng and Jiawei Han. CLARANS: A Method for Clustering Objects for Spatial Data Mining. IEEE Transactions on Knowledge and Data Engineering, 14(5):1003--1016, 2002.

[5040] Dan Pelleg and Andrew W. Moore. X -means: Extending K -means with Efficient Estimation of the Number of Clusters. ICML00, pages 727--734, 2000. Morgan Kaufmann, San Francisco, CA.

[5041] Markus Peters and Mohammed J. Zaki. CLICKS: Clustering Categorical Data using K-partite Maximal Cliques. ICDE05, Tokyo, Japan, 2005.

[5042] Thomas C. Redman. Data Quality: The Field Guide. Digital Press, 2001.

[5043] Charles Romesburg. Cluster Analysis for Researchers. Life Time Learning, Belmont, CA, 1984.

[5044] J. Sander and M. Ester and H.-P. Kriegel and X. Xu. Density-Based Clustering in Spatial Databases: The Algorithm GDBSCAN and its Applications. Data Mining and Knowledge Discovery, 2(2):169--194, 1998.

[5045] Sergio M. Savaresi and Daniel Boley. A comparative analysis on the bisecting K-means and the PDDP clustering algorithms. Intelligent Data Analysis, 8(4):345-362, 2004.

[5046] Erich Schikuta and Martin Erhart. The BANG-Clustering System: Grid-Based Data Analysis. In Xiaohui Liu and Paul R. Cohen and Michael R. Berthold, editors, Advances in Intelligent Data Analysis, Reasoning about Data, Second Intl. Symposium, IDA-97, London in Lecture Notes in Computer Science, pages 513--524, 1997. Springer.

[5047] Gholamhosein Sheikholeslami and Surojit Chatterjee and Aidong Zhang. Wavecluster: A multi-resolution clustering approach for very large spatial databases. In Ashish Gupta and Oded Shmueli and Jennifer Widom, editors, VLDB98, pages 428--439, New York City, 1998. Morgan Kaufmann.

[5048] Sneath, Peter H. A. and Robert R. Sokal. Numerical Taxonomy. Freeman, San Francisco, 1971.

[5049] Helmuth Späth. Cluster Analysis Algorithms for Data Reduction and Classification of Objects, volume 4 of Computers and Their Application. Ellis Horwood Publishers, Chichester, 1980. ISBN 0-85312-141-9.

[5050] Ramakrishnan Srikant and Rakesh Agrawal. Mining Quantitative Association Rules in Large Relational Tables. In H. V. Jagadish and Inderpal Singh Mumick, editors, SIGMOD96, pages 1--12, Montreal, Quebec, Canada, 1996.

[5051] Michael Steinbach and George Karypis and Vipin Kumar. A Comparison of Document Clustering Techniques. Proc. of KDD Workshop on Text Mining, Proc. of the 6th Intl. Conf. on Knowledge Discovery and Data Mining, Boston, MA, 2000.

[5052] Robert E. Stepp and Ryszard S. Michalski. Conceptual clustering of structured objects: A goal-oriented approach. Artificial Intelligence, 28(1):43--69, 1986.

[5053] Alexander Strehl and Joydeep Ghosh. A Scalable Approach to Balanced, High-dimensional Clustering of Market-Baskets. Proc. of the 7th Intl. Conf. on High Performance Computing (HiPC 2000) in Lecture Notes in Computer Science, pages 525--536, Bangalore, India, 2000. Springer.

[5054] Charles T. Zahn. Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters. IEEE Transactions on Computers, C-20(1):68-86, 1971.

[5055] Tian Zhang and Raghu Ramakrishnan and Miron Livny. BIRCH: an efficient data clustering method for very large databases. In H. V. Jagadish and Inderpal Singh Mumick, editors, SIGMOD96, pages 103--114, Montreal, Quebec, Canada, 1996. ACM Press.

[5056] CLUTO 2.1.1: Software for Clustering High-Dimensional Datasets. /www.cs.umn.edu/ : karypis, 2003.

[4629] Agrawal, R. and Imielinski, T. and Swami, A. Database mining: A performance perspective. IEEE Transactions on Knowledge and Data Engineering, 5:914--925, 1993.

[5057] P. S. Bradley and U. M. Fayyad and C. Reina. Scaling EM (Expectation Maximization) Clustering to Large Databases. Technical report, MSR-TR-98-35, Microsoft Research, 1999.

[5058] D. A. Burn. Designing Effective Statistical Graphs. In C. R. Rao, editors, Handbook of Statistics 9. Elsevier/North-Holland, Amsterdam, The Netherlands, 1993.

[5059] Inderjit S. Dhillon and Yuqiang Guan and J. Kogan. Iterative Clustering of High Dimensional Text Data Augmented by Local Search. ICDM02, pages 131-138, 2002. IEEE Computer Society.

[5060] Inderjit S. Dhillon and Dharmendra S. Modha. Concept Decompositions for Large Sparse Text Data Using Clustering. Machine Learning, 42(1/2):143-175, 2001.

[5061] Michael Friendly. Gallery of Data Visualization. http://www.math.yorku.ca/SCS/Gallery/, 2005.

[5062] Eui-Hong Han and George Karypis and Vipin Kumar and Bamshad Mobasher. Hypergraph Based Clustering in High-Dimensional Data Sets: A Summary of Results. IEEE Data Eng. Bulletin, 21(1):15-22, 1998.

[5063] Konstantinos Kalpakis and Dhiral Gada and Vasundhara Puttagunta. Distance Measures for Effective Clustering of ARIMA Time-Series. ICDM01, pages 273-280, 2001. IEEE Computer Society.

[5064] Eamonn J. Keogh and Michael J. Pazzani. Scaling up dynamic time warping for datamining applications. Proc. of the 10th Intl. Conf. on Knowledge Discovery and Data Mining, pages 285-289, 2000.

[5065] Robert Spence. Information Visualization. ACM Press, New York, 2000.

[5066] Michael Steinbach and Pang-Ning Tan and Vipin Kumar and Steven Klooster and Christopher Potter. Discovery of climate indices using clustering. KDD '03: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 446--455, New York, NY, USA, 2003. ACM Press.

[5067] Edward R. Tufte. The Visual Display of Quantitative Information. Graphics Press, Cheshire, CT, 1986.

[5068] John W. Tukey. Exploratory data analysis. Addison-Wesley, 1977.

[5069] Velleman, Paul and Hoaglin, David. The ABC's of EDA: Applications, Basics, and Computing of Exploratory Data Analysis. Duxbury, 1981.

[5070] Bin Zhang and Meichun Hsu and Umeshwar Dayal. K-Harmonic Means---A Data Clustering Algorithm. Technical report, HPL-1999-124, Hewlett Packard Laboratories, 1999.

[5071] Ying Zhao and George Karypis. Empirical and theoretical comparisons of selected criterion functions for document clustering. Machine Learning, 55(3):311--331, 2004.

[5072] Information Visualization in Data Mining and Knowledge Discovery. Morgan Kaufmann Publishers, San Francisco, CA, 2001.

[5073] Mathematica 5.1. Wolfram Research, Inc.. http://www.wolfram.com/, 2005.

[5074] MATLAB 7.0. The MathWorks, Inc.. http://www.mathworks.com, 2005.

[5075] Microsoft Excel 2003. Microsoft, Inc.. http://www.microsoft.com/, 2003.

[4651] Agarwal, R. C. and Shafer, J. C. Parallel Mining of Association Rules. IEEE Transactions on Knowledge and Data Engineering, 8(6):962--969, 1998.

[4652] Aggarwal, C. C. and Sun, Z. and Yu, P. S. Online Generation of Profile Association Rules. KDD98, pages 129--133, New York, NY, 1996.

[4653] Aggarwal, C. C. and Yu, P. S. Mining Associations with the Collective Strength Approach. IEEE Trans. on Knowledge and Data Engineering, 13(6):863--873, 2001.

[4654] Aggarwal, C. C. and Yu, P. S. Mining Large Itemsets for Association Rules. Data Engineering Bulletin, 21(1):23--31, 1998.

[4655] Agrawal, R. and Imielinski, T. and Swami, A. Mining association rules between sets of items in large databases. Proc. ACM SIGMOD Intl. Conf. Management of Data, pages 207--216, Washington, DC, 1993.

[4656] Agrawal, R. and Srikant, R. Mining Sequential Patterns. Proc. of Intl. Conf. on Data Engineering, pages 3--14, Taipei, Taiwan, 1995.

[4657] Aha, D. W. A study of instance-based algorithms for supervised learning tasks: mathematical, empirical, and psychological evaluations. PhD thesis, University of California, Irvine, 1990.

[4658] Ali, K. and Manganaris, S. and Srikant, R. Partial Classification using Association Rules. KDD97, pages 115--118, Newport Beach, CA, 1997.

[4659] Alsabti, K. and Ranka, S. and Singh, V. CLOUDS: A Decision Tree Classifier for Large Datasets. KDD98, pages 2--8, New York, NY, 1998.

[4660] Aumann, Y. and Lindell, Y. A Statistical Theory for Quantitative Association Rules. KDD99, pages 261--270, San Diego, CA, 1999.

[5076] E. F. Codd and S. B. Codd and C. T. Smalley. Providing OLAP (On-line Analytical Processing) to User- Analysts: An IT Mandate. White Paper, E.F. Codd and Associates, 1993.

[5077] Jim Gray and Surajit Chaudhuri and Adam Bosworth and Andrew Layman and Don Reichart and Murali Venkatrao and Frank Pellow and Hamid Pirahesh. Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals. Journal Data Mining and Knowledge Discovery, 1(1):29--53, 1997.

[5078] Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems. McGraw-Hill, 3rd edition, 2002.

[5079] Arie Shoshani. OLAP and statistical databases: similarities and differences. Proc. of the Sixteenth ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems, pages 185--196, 1997. ACM Press.

[5080] Zhong, N. and Yao, Y. Y. and Ohsuga, S. Peculiarity Oriented Multi-database Mining. PKDD99, pages 136--146, Prague, Czech Republic, 1999.

[5081] R: A language and environment for statistical computing and graphics. The R Project for Statistical Computing. http://www.r-project.org/, 2005.

[4679] Allwein, E. L. and Schapire, R. E. and Singer, Y. Reducing Multiclass to Binary: A Unifying Approach to Margin Classifiers. Journal of Machine Learning Research, 1:113--141, 2000.

[4680] Antonie, M-L. and Zaďane, O. R. Mining Positive and Negative Association Rules: An Approach for Confined Rules. PKDD04, pages 27--38, Pisa, Italy, 2004.

[5082] S-PLUS. Insightful Corporation. http://www.insightful.com, 2005.

[5083] SAS: Statistical Analysis System. SAS Institute Inc.. http://www.sas.com/, 2005.

[4683] Ayres, J. and Flannick, J. and Gehrke, J. and Yiu, T. Sequential Pattern mining using a bitmap representation. KDD02, pages 429-435, Edmonton, Canada, 2002.

[4684] Barbará, D. and Couto, J. and Jajodia, S. and Wu, N. ADAM: A Testbed for Exploring the Use of Data Mining in Intrusion Detection. SIGMOD Record, 30(4):15--24, 2001.

[4685] Bay, S. D. and Pazzani, M. Detecting Group Differences: Mining Contrast Sets. Data Mining and Knowledge Discovery, 5(3):213--246, 2001.

[4686] Bayardo, R. Efficiently Mining Long Patterns from Databases. SIGMOD98, pages 85--93, Seattle, WA, 1998.

[4687] Bayardo, R. and Agrawal, R. Mining the Most Interesting Rules. KDD99, pages 145--153, San Diego, CA, 1999.

[4688] Benjamini, Y. and Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal Royal Statistical Society B, 57(1):289--300, 1995.

[4689] Breslow, L. A. and Aha, D. W. Simplifying Decision Trees: A Survey. Knowledge Engineering Review, 12(1):1--40, 1997.

[5084] SPSS: Statistical Package for the Social Sciences. SPSS, Inc.. http://www.spss.com/, 2005.

[4691] Bennett, K. and Campbell, C. Support Vector Machines: Hype or Hallelujah. SIGKDD Explorations, 2(2):1--13, 2000.

[4692] Berry, M. J. A. and Linoff, G. Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management. Wiley Computer Publishing, 2nd edition, 2004.

[4693] Bishop, C. M. Neural Networks for Pattern Recognition. Oxford University Press, Oxford, U.K., 1995.

[4694] Bolton, R. J. and Hand, D. J. and Adams, N. M. Determining Hit Rate in Pattern Search. Proc. of the ESF Exploratory Workshop on Pattern Detection and Discovery in Data Mining, pages 36--48, London, UK, 2002.

[4695] Boulicaut, J-F. and Bykowski, A. and Jeudy, B. Towards the Tractable Discovery of Association Rules with Negations. Proc. of the 4th Intl. Conf on Flexible Query Answering Systems FQAS'00, pages 425--434, Warsaw, Poland, 2000.

[4696] Bradley, A. P. The use of the area under the ROC curve in the Evaluation of Machine Learning Algorithms. Pattern Recognition, 30(7):1145--1149, 1997.

[4697] Paul S. Bradley and Johannes Gehrke and Raghu Ramakrishnan and Ramakrishnan Srikant. Scaling mining algorithms to large databases. Communications of the ACM, 45(8):38-43, 2002.

[4698] Breiman, L. Bagging Predictors. Machine Learning, 24(2):123--140, 1996.

[4699] Breiman, L. Bias, Variance, and Arcing Classifiers. Technical report, 486, University of California, Berkeley, CA, 1996.

[4700] Breiman, L. Random Forests. Machine Learning, 45(1):5--32, 2001.

[4701] Breiman, L. and Friedman, J. H. and Olshen, R. and Stone, C. J. Classification and Regression Trees. Chapman & Hall, New York, 1984.

[4702] Brin, S. and Motwani, R. and Silverstein, C. Beyond market baskets: Generalizing association rules to correlations. Proc. ACM SIGMOD Intl. Conf. Management of Data, pages 265--276, Tucson, AZ, 1997.

[4703] Brin, S. and Motwani, R. and Ullman, J. and Tsur, S. Dynamic Itemset Counting and Implication Rules for market basket data. SIGMOD97, pages 255--264, Tucson, AZ, 1997.

[4704] Buntine, W. Learning classification trees. In Hand, D. J., editors, Artificial Intelligence Frontiers in Statistics, pages 182--201, 1993. Chapman & Hall, London.

[4705] Burges, C. J. C. A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 2(2):121--167, 1998.

[4706] Cai, C. H. and Fu, A. and Cheng, C. H. and Kwong, W. W. Mining Association Rules with Weighted Items. Proc. of IEEE Intl. Database Engineering and Applications Symp., pages 68--77, Cardiff, Wales, 1998.

[4707] Cant u' -Paz, E. and Kamath, C. Using evolutionary algorithms to induce oblique decision trees. Proc. of the Genetic and Evolutionary Computation Conf., pages 1053--1060, San Francisco, CA, 2000.

[4708] Chakrabarti, S. Mining the Web: Discovering Knowledge from Hypertext Data. Morgan Kaufmann, San Francisco, CA, 2003.

[4709] Chawla, N. V. and Bowyer, K. W. and Hall, L. O. and Kegelmeyer, W. P. SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16:321--357, 2002.

[4710] Chawla, N. V. and Japkowicz, N. and Kolcz, A. Editorial: Special Issue on Learning from Imbalanced Data Sets. SIGKDD Explorations, 6(1):1--6, 2004.

[4711] Chen, Q. and Dayal, U. and Hsu, M. A Distributed OLAP infrastructure for E-Commerce. Proc. of the 4th IFCIS Intl. Conf. on Cooperative Information Systems, pages 209--220, Edinburgh, Scotland, 1999.

[4712] Cheng, H. and Yan, X. and Han, J. IncSpan: incremental mining of sequential patterns in large database. KDD04, pages 527-532, Seattle, WA, 2004.

[4713] Cherkassky, V. and Mulier, F. Learning from Data: Concepts, Theory, and Methods. Wiley Interscience, 1998.

[4714] Cheung, D. C. and Lee, S. D. and Kao, B. A General Incremental Technique for Maintaining Discovered Association Rules. Proc. of the 5th Intl. Conf. on Database Systems for Advanced Applications, pages 185--194, Melbourne, Australia, 1997.

[4715] Clark, P. and Boswell, R. Rule Induction with CN2: Some Recent Improvements. Machine Learning: Proc. of the 5th European Conf. (EWSL-91), pages 151--163, 1991.

[4716] Clark, P. and Niblett, T. The CN2 Induction Algorithm. Machine Learning, 3(4):261--283, 1989.

[4717] Cohen, W. W. Fast Effective Rule Induction. ICML95, pages 115--123, Tahoe City, CA, 1995.

[4718] Cooley, R. and Tan, P. N. and Srivastava, J. Discovery of Interesting Usage Patterns from Web Data. In Spiliopoulou, M. and Masand, B., editors, Advances in Web Usage Analysis and User Profiling, pages 163--182. Lecture Notes in Computer Science, 2000.

[4719] Cost, S. and Salzberg, S. A Weighted Nearest Neighbor Algorithm for Learning with Symbolic Features. Machine Learning, 10:57--78, 1993.

[4720] Cover, T. M. and Hart, P. E. Nearest Neighbor Pattern Classification. Knowledge Based Systems, 8(6):373--389, 1995.

[4721] Cristianini, N. and Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, 2000.

[4722] Dietterich, T. G. Ensemble Methods in Machine Learning. First Intl. Workshop on Multiple Classifier Systems, Cagliari, Italy, 2000.

[4723] Dietterich, T. G. and Bakiri, G. Solving Multiclass Learning Problems via Error-Correcting Output Codes. Journal of Artificial Intelligence Research, 2:263--286, 1995.

[4724] Dokas, P. and Ertöz, L. and Kumar, V. and Lazarevic, A. and Srivastava, J. and Tan, P. N. Data Mining for Network Intrusion Detection. Proc. NSF Workshop on Next Generation Data Mining, Baltimore, MD, 2002.

[4725] Domingos, P. MetaCost: A General Method for Making Classifiers Cost-Sensitive. KDD99, pages 155--164, San Diego, CA, 1999.

[4726] Domingos, P. The RISE system: Conquering without separating. Proc. of the 6th IEEE Intl. Conf. on Tools with Artificial Intelligence, pages 704--707, New Orleans, LA, 1994.

[4727] Domingos, P. The Role of Occam's Razor in Knowledge Discovery. Data Mining and Knowledge Discovery, 3(4):409--425, 1999.

[4728] Domingos, P. and Pazzani, M. On the Optimality of the Simple Bayesian Classifier under Zero-One Loss. Machine Learning, 29(2-3):103--130, 1997.

[4729] Dong, G. and Li, J. Efficient Mining of Emerging Patterns: Discovering Trends and Differences. KDD99, pages 43--52, San Diego, CA, 1999.

[4730] Dong, G. and Li, J. Interestingness of discovered association rules in terms of neighborhood-based unexpectedness. PAKDD98, pages 72--86, Melbourne, Australia, 1998.

[4731] Drummond, C. and Holte, R. C. C4.5, Class imbalance, and Cost sensitivity: Why under-sampling beats over-sampling. ICML'2004 Workshop on Learning from Imbalanced Data Sets II, Washington, DC, 2003.

[4732] Duda, R. O. and Hart, P. E. and Stork, D. G. Pattern Classification. John Wiley & Sons, Inc., New York, 2nd edition, 2001.

[4733] DuMouchel, W. and Pregibon, D. Empirical Bayes Screening for Multi-Item Associations. KDD01, pages 67--76, San Francisco, CA, 2001.

[4734] Dunham, M. H. Data Mining: Introductory and Advanced Topics. Prentice Hall, 2002.

[4735] Dunkel, B. and Soparkar, N. Data Organization and Access for Efficient Data Mining. ICDE99, pages 522--529, Sydney, Australia, 1999.

[4736] Efron, B. and Tibshirani, R. Cross-validation and the Bootstrap: Estimating the Error Rate of a Prediction Rule. Technical report, Stanford University, 1995.

[4737] Elkan, C. The Foundations of Cost-Sensitive Learning. Proc. of the 17th Intl. Joint Conf. on Artificial Intelligence, pages 973--978, Seattle, WA, 2001.

[4738] Esposito, F. and Malerba, D. and Semeraro, G. A Comparative Analysis of Methods for Pruning Decision Trees. IEEE Trans. Pattern Analysis and Machine Intelligence, 19(5):476--491, 1997.

[4739] F u ¨ rnkranz, J. and Widmer, G. Incremental reduced error pruning. ICML94, pages 70--77, New Brunswick, NJ, 1994.

[4740] Fabris, C. C. and Freitas, A. A. Discovering surprising patterns by detecting occurrences of Simpson's paradox. Proc. of the 19th SGES Intl. Conf. on Knowledge-Based Systems and Applied Artificial Intelligence), pages 148--160, Cambridge, UK, 1999.

[4741] Fan, W. and Stolfo, S. J. and Zhang, J. and Chan, P. K. AdaCost: misclassification cost-sensitive boosting. ICML99, pages 97--105, Bled, Slovenia, 1999.

[4742] Usama M. Fayyad and Gregory Piatetsky-Shapiro and Padhraic Smyth. From Data Mining to Knowledge Discovery: An Overview. Advances in Knowledge Discovery and Data Mining, pages 1-34. AAAI Press, 1996.

[4743] Feng, L. and Lu, H. J. and Yu, J. X. and Han, J. Mining inter-transaction associations with templates. CIKM99, pages 225--233, Kansas City, Missouri, 1999.

[4744] Ferri, C. and Flach, P. and Hernandez-Orallo, J. Learning Decision Trees Using the Area Under the ROC Curve. ICML02, pages 139--146, Sydney, Australia, 2002.

[4745] Fisher, R. A. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7:179--188, 1936.

[4746] Freitas, A. A. Understanding the crucial differences between classification and discovery of association rules---a position paper. SIGKDD Explorations, 2(1):65--69, 2000.

[4747] Freund, Y. and Schapire, R. E. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119--139, 1997.

[4748] Friedman, J. H. Data Mining and Statistics: What's the Connection?. Unpublished. www-stat.stanford.edu/ : jhf/ftp/dm-stat.ps, 1997.

[4749] Friedman, J. H. and Fisher, N. I. Bump hunting in high-dimensional data. Statistics and Computing, 9(2):123--143, 1999.

[4750] Fukuda, T. and Morimoto, Y. and Morishita, S. and Tokuyama, T. Mining Optimized Association Rules for Numeric Attributes. PODS96, pages 182--191, Montreal, Canada, 1996.

[4751] Fukunaga, K. Introduction to Statistical Pattern Recognition. Academic Press, New York, 1990.

[4752] Garofalakis, M. N. and Rastogi, R. and Shim, K. SPIRIT: Sequential Pattern Mining with Regular Expression Constraints. VLDB99, pages 223--234, Edinburgh, Scotland, 1999.

[4753] Gehrke, J. and Ramakrishnan, R. and Ganti, V. RainForest---A Framework for Fast Decision Tree Construction of Large Datasets. Data Mining and Knowledge Discovery, 4(2/3):127--162, 2000.

[4754] Clark Glymour and David Madigan and Daryl Pregibon and Padhraic Smyth. Statistical Themes and Lessons for Data Mining. Data Mining and Knowledge Discovery, 1(1):11--28, 1997.

[4755] Robert L. Grossman and Mark F. Hornick and Gregor Meyer. Data mining standards initiatives. Communications of the ACM, 45(8):59-61, 2002.

[4756] Gunopulos, D. and Khardon, R. and Mannila, H. and Toivonen, H. Data Mining, Hypergraph Transversals, and Machine Learning. PODS97, pages 209--216, Tucson, AZ, 1997.

[4757] Han, E.-H. and Karypis, G. and Kumar, V. Min-Apriori: An Algorithm for Finding Association Rules in Data with Continuous Attributes. http://www.cs.umn.edu/han, 1997.

[4758] Han, E.-H. and Karypis, G. and Kumar, V. Scalable Parallel Data Mining for Association Rules. SIGMOD97, pages 277--288, Tucson, AZ, 1997.

[4759] Han, E.-H. and Karypis, G. and Kumar, V. Text Categorization Using Weight Adjusted k-Nearest Neighbor Classification. PAKDD01, Lyon, France, 2001.

[4760] Han, E.-H. and Karypis, G. and Kumar, V. and Mobasher, B. Clustering Based on Association Rule Hypergraphs. DMKD97, Tucson, AZ, 1997.

[4761] Han, J. and Fu, Y. Mining Multiple-Level Association Rules in Large Databases. IEEE Trans. on Knowledge and Data Engineering, 11(5):798--804, 1999.

[4762] Han, J. and Fu, Y. and Koperski, K. and Wang, W. and Zaďane, O. R. DMQL: A data mining query language for relational databases. DMKD96, Montreal, Canada, 1996.

[4763] Han, J. and Kamber, M. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, San Francisco, 2001.

[4764] Han, J. and Pei, J. and Yin, Y. Mining Frequent Patterns without Candidate Generation. Proc. ACM-SIGMOD Int. Conf. on Management of Data (SIGMOD'00), pages 1--12, Dallas, TX, 2000.

[4765] Jiawei Han and Russ B. Altman and Vipin Kumar and Heikki Mannila and Daryl Pregibon. Emerging scientific applications in data mining. Communications of the ACM, 45(8):54-58, 2002.

[4766] Hand, D. J. Data Mining: Statistics and More?. The American Statistician, 52(2):112--118, 1998.

[4767] Hand, D. J. and Mannila, H. and Smyth, P. Principles of Data Mining. MIT Press, 2001.

[4768] Hastie, T. and Tibshirani, R. Classification by pairwise coupling. Annals of Statistics, 26(2):451--471, 1998.

[4769] Hastie, T. and Tibshirani, R. and Friedman, J. H. The Elements of Statistical Learning: Data Mining, Inference, Prediction. Springer, New York, 2001.

[4770] Hearst, M. Trends & Controversies: Support Vector Machines. IEEE Intelligent Systems, 13(4):18--28, 1998.

[4771] Heath, D. and Kasif, S. and Salzberg, S. Induction of Oblique Decision Trees. Proc. of the 13th Intl. Joint Conf. on Artificial Intelligence, pages 1002--1007, Chambery, France, 1993.

[4772] Heckerman, D. Bayesian Networks for Data Mining. Data Mining and Knowledge Discovery, 1(1):79--119, 1997.

[4773] Hidber, C. Online Association Rule Mining. SIGMOD99, pages 145--156, Philadelphia, PA, 1999.

[4774] Hilderman, R. J. and Hamilton, H. J. Knowledge Discovery and Measures of Interest. Kluwer Academic Publishers, 2001.

[4775] Hipp, J. and Guntzer, U. and Nakhaeizadeh, G. Algorithms for Association Rule Mining---A General Survey. SigKDD Explorations, 2(1):58--64, 2000.

[4776] Hofmann, H. and Siebes, A. P. J. M. and Wilhelm, A. F. X. Visualizing Association Rules with Interactive Mosaic Plots. KDD00, pages 227--235, Boston, MA, 2000.

[4777] Holt, J. D. and Chung, S. M. Efficient Mining of Association Rules in Text Databases. CIKM99, pages 234--242, Kansas City, Missouri, 1999.

[4778] Holte, R. C. Very Simple Classification Rules Perform Well on Most Commonly Used Data sets. Machine Learning, 11:63--91, 1993.

[4779] Houtsma, M. and Swami, A. Set-oriented Mining for Association Rules in Relational Databases. ICDE95, pages 25--33, Taipei, Taiwan, 1995.

[4780] Huang, Y. and Shekhar, S. and Xiong, H. Discovering Co-location Patterns from Spatial Datasets: A General Approach. IEEE Trans. on Knowledge and Data Engineering, 16(12):1472--1485, 2004.

[4781] Imielinski, T. and Virmani, A. and Abdulghani, A. DataMine: Application Programming Interface and Query Language for Database Mining. KDD96, pages 256--262, Portland, Oregon, 1996.

[4782] Inokuchi, A. and Washio, T. and Motoda, H. An Apriori-based Algorithm for Mining Frequent Substructures from Graph Data. PKDD00, pages 13--23, Lyon, France, 2000.

[4783] Jain, A. K. and Duin, R. P. W. and Mao, J. Statistical Pattern Recognition: A Review. IEEE Tran. Patt. Anal. and Mach. Intellig., 22(1):4--37, 2000.

[4784] Japkowicz, N. The Class Imbalance Problem: Significance and Strategies. Proc. of the 2000 Intl. Conf. on Artificial Intelligence: Special Track on Inductive Learning, pages 111--117, Las Vegas, NV, 2000.

[4785] Jaroszewicz, S. and Simovici, D. Interestingness of Frequent Itemsets Using Bayesian Networks as Background Knowledge. KDD04, pages 178--186, Seattle, WA, 2004.

[4786] Jensen, D. and Cohen, P. R. Multiple Comparisons in Induction Algorithms. Machine Learning, 38(3):309--338, 2000.

[4787] Joshi, M. V. On Evaluating Performance of Classifiers for Rare Classes. ICDM02, Maebashi City, Japan, 2002.

[4788] Joshi, M. V. and Agarwal, R. C. and Kumar, V. Mining Needles in a Haystack: Classifying Rare Classes via Two-Phase Rule Induction. SIGMOD01, pages 91-102, Santa Barbara, CA, 2001.

[4789] Joshi, M. V. and Agarwal, R. C. and Kumar, V. Predicting rare classes: can boosting make any weak learner strong?. KDD02, pages 297-306, Edmonton, Canada, 2002.

[4790] Joshi, M. V. and Karypis, G. and Kumar, V. A Universal Formulation of Sequential Patterns. Proc. of the KDD'2001 workshop on Temporal Data Mining, San Francisco, CA, 2001.

[4791] Joshi, M. V. and Karypis, G. and Kumar, V. ScalParC: A New Scalable and Efficient Parallel Classification Algorithm for Mining Large Datasets. Proc. of 12th Intl. Parallel Processing Symp. (IPPS/SPDP), pages 573-579, Orlando, FL, 1998.

[4792] Joshi, M. V. and Kumar, V. CREDOS: Classification Using Ripple Down Structure (A Case for Rare Classes). SDM04, pages 321-332, Orlando, FL, 2004.

[4793] Kamber, M. and Shinghal, R. Evaluating the Interestingness of Characteristic Rules. KDD96, pages 263--266, Portland, Oregon, 1996.

[4794] Kantardzic, M. Data Mining: Concepts, Models, Methods, and Algorithms. Wiley-IEEE Press, Piscataway, NJ, 2003.

[4795] Kass, G. V. An Exploratory Technique for Investigating Large Quantities of Categorical Data. Applied Statistics, 29:119--127, 1980.

[4796] Kim, B. and Landgrebe, D. Hierarchical decision classifiers in high-dimensional and large class data. IEEE Trans. on Geoscience and Remote Sensing, 29(4):518--528, 1991.

[4797] Klemettinen, M. A Knowledge Discovery Methodology for Telecommunication Network Alarm Databases. PhD thesis, University of Helsinki, 1999.

[4798] Kohavi, R. A Study on Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. Proc. of the 15th Intl. Joint Conf. on Artificial Intelligence, pages 1137--1145, Montreal, Canada, 1995.

[4799] Kong, E. B. and Dietterich, T. G. Error-Correcting Output Coding Corrects Bias and Variance. ICML95, pages 313--321, Tahoe City, CA, 1995.

[4800] Kosters, W. A. and Marchiori, E. and Oerlemans, A. Mining Clusters with Association Rules. The 3rd Symp. on Intelligent Data Analysis (IDA99), pages 39--50, Amsterdam, 1999.

[4801] Kubat, M. and Matwin, S. Addressing the Curse of Imbalanced Training Sets: One Sided Selection. ICML97, pages 179--186, Nashville, TN, 1997.

[4802] Kulkarni, S. R. and Lugosi, G. and Venkatesh, S. S. Learning Pattern Classification---A Survey. IEEE Tran. Inf. Theory, 44(6):2178--2206, 1998.

[4803] Kumar, V. and Joshi, M. V. and Han, E.-H. and Tan, P. N. and Steinbach, M. High Performance Data Mining. High Performance Computing for Computational Science (VECPAR 2002), pages 111-125. Springer, 2002.

[4804] Kuok, C. M. and Fu, A. and Wong, M. H. Mining Fuzzy Association Rules in Databases. ACM SIGMOD Record, 27(1):41--46, 1998.

[4805] Kuramochi, M. and Karypis, G. Discovering Frequent Geometric Subgraphs. ICDM02, pages 258--265, Maebashi City, Japan, 2002.

[4806] Kuramochi, M. and Karypis, G. Frequent Subgraph Discovery. ICDM01, pages 313--320, San Jose, CA, 2001.

[4807] Diane Lambert. What Use is Statistics for Massive Data?. ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, pages 54-62, 2000.

[4808] Landeweerd, G. and Timmers, T. and Gersema, E. and Bins, M. and Halic, M. Binary tree versus single level tree classification of white blood cells. Pattern Recognition, 16:571--577, 1983.

[4809] Langley, P. and Iba, W. and Thompson, K. An analysis of Bayesian classifiers. Proc. of the 10th National Conf. on Artificial Intelligence, pages 223--228, 1992.

[4810] Lee, W. and Stolfo, S. J. and Mok, K. W. Adaptive Intrusion Detection: A Data Mining Approach. Artificial Intelligence Review, 14(6):533--567, 2000.

[4811] Lent, B. and Swami, A. and Widom, J. Clustering Association Rules. ICDE97, pages 220--231, Birmingham, U.K, 1997.

[4812] Lewis, D. D. Naive Bayes at Forty: The Independence Assumption in Information Retrieval. Proc. of the 10th European Conf. on Machine Learning (ECML 1998), pages 4--15, 1998.

[4813] Li, W. and Han, J. and Pei, J. CMAR: Accurate and Efficient Classification Based on Multiple Class-association Rules. ICDM01, pages 369--376, San Jose, CA, 2001.

[4814] Liu, B. and Hsu, W. and Chen, S. Using General Impressions to Analyze Discovered Classification Rules. KDD97, pages 31--36, Newport Beach, CA, 1997.

[4815] Liu, B. and Hsu, W. and Ma, Y. Integrating Classification and Association Rule Mining. KDD98, pages 80--86, New York, NY, 1998.

[4816] Liu, B. and Hsu, W. and Ma, Y. Mining association rules with multiple minimum supports. KDD99, pages 125--134, San Diego, CA, 1999.

[4817] Liu, B. and Hsu, W. and Ma, Y. Pruning and Summarizing the Discovered Associations. KDD99, pages 125--134, San Diego, CA, 1999.

[4818] Mangasarian, O. Data Mining via Support Vector Machines. Technical report, Technical Report 01-05, Data Mining Institute, 2001.

[4819] Mannila, H. and Toivonen, H. and Verkamo, A. I. Discovery of Frequent Episodes in Event Sequences. Data Mining and Knowledge Discovery, 1(3):259--289, 1997.

[4820] Marcus, A. and Maletic, J. I. and Lin, K.-I. Ordinal association rules for error identification in data sets. CIKM01, pages 589--591, Atlanta, GA, 2001.

[4821] Margineantu, D. D. and Dietterich, T. G. Learning Decision Trees for Loss Minimization in Multi-Class Problems.Technical report, 99-30-03, Oregon State University, 1999.

[4822] Megiddo, N. and Srikant, R. Discovering Predictive Association Rules. KDD98, pages 274--278, New York, 1998.

[4823] Mehta, M. and Agrawal, R. and Rissanen, J. SLIQ: A Fast Scalable Classifier for Data Mining. Proc. of the 5th Intl. Conf. on Extending Database Technology, pages 18--32, Avignon, France, 1996.

[4824] Meo, R. and Psaila, G. and Ceri, S. A New SQL-like Operator for Mining Association Rules. VLDB96, pages 122--133, Bombay, India, 1996.

[4825] Michalski, R. S. A theory and methodology of inductive learning. Artificial Intelligence, 20:111--116, 1983.

[4826] Michalski, R. S. and Mozetic, I. and Hong, J. and Lavrac, N. The Multi-Purpose Incremental Learning System AQ15 and Its Testing Application to Three Medical Domains. Proc. of 5th National Conf. on Artificial Intelligence, Orlando, 1986.

[4827] Michie, D. and Spiegelhalter, D. J. and Taylor, C. C. Machine Learning, Neural and Statistical Classification. Ellis Horwood, Upper Saddle River, NJ, 1994.

[4828] Miller, R. J. and Yang, Y. Association Rules over Interval Data. SIGMOD97, pages 452--461, Tucson, AZ, 1997.

[4829] Mingers, J. An empirical comparison of pruning methods for decision tree induction. Machine Learning, 4:227--243, 1989.

[4830] Mingers, J. Expert Systems---Rule Induction with Statistical Data. J Operational Research Society, 38:39--47, 1987.

[4831] Mitchell, T. Machine Learning. McGraw-Hill, Boston, MA, 1997.

[4832] Moret, B. M. E. Decision Trees and Diagrams. Computing Surveys, 14(4):593--623, 1982.

[4833] Morimoto, Y. and Fukuda, T. and Matsuzawa, H. and Tokuyama, T. and Yoda, K. Algorithms for mining association rules for binary segmentations of huge categorical databases. VLDB98, pages 380--391, New York, 1998.

[4834] Mosteller, F. Association and Estimation in Contingency Tables. Journal of the American Statistical Association, 63:1--28, 1968.

[4835] Mueller, A. Fast sequential and parallel algorithms for association rule mining: A comparison. Technical report, CS-TR-3515, University of Maryland, 1995.

[4836] Muggleton, S. Foundations of Inductive Logic Programming. Prentice Hall, Englewood Cliffs, NJ, 1995.

[4837] Murthy, S. K. Automatic Construction of Decision Trees from Data: A Multi-Disciplinary Survey. Data Mining and Knowledge Discovery, 2(4):345--389, 1998.

[4838] Murthy, S. K. and Kasif, S. and Salzberg, S. A system for induction of oblique decision trees. J of Artificial Intelligence Research, 2:1--33, 1994.

[4839] Ng, R. T. and Lakshmanan, L. V. S. and Han, J. and Pang, A. Exploratory Mining and Pruning Optimizations of Constrained Association Rules. SIGMOD98, pages 13--24, Seattle, WA, 1998.

[4840] Niblett, T. Constructing decision trees in noisy domains. Proc. of the 2nd European Working Session on Learning, pages 67--78, Bled, Yugoslavia, 1987.

[4841] Niblett, T. and Bratko, I. Learning Decision Rules in Noisy Domains. In Bramer, M., editors, Research and Development in Expert Systems III, Cambridge, 1986. Cambridge University Press.

[4842] Omiecinski, E. Alternative Interest Measures for Mining Associations in Databases. IEEE Trans. on Knowledge and Data Engineering, 15(1):57--69, 2003.

[4843] Ozden, B. and Ramaswamy, S. and Silberschatz, A. Cyclic Association Rules. DE98, pages 412--421, Orlando, FL, 1998.

[4844] Ozgur, A. and Tan, P. N. and Kumar, V. RBA: An Integrated Framework for Regression based on Association Rules. SDM04, pages 210--221, Orlando, FL, 2004.

[4845] Park, J. S. and Chen, M.-S. and Yu, P. S. An effective hash-based algorithm for mining association rules. SIGMOD Record, 25(2):175--186, 1995.

[4846] Parr Rud, O. Data Mining Cookbook: Modeling Data for Marketing, Risk and Customer Relationship Management. John Wiley & Sons, New York, NY, 2001.

[4847] Parthasarathy, S. and Coatney, M. Efficient Discovery of Common Substructures in Macromolecules. ICDM02, pages 362--369, Maebashi City, Japan, 2002.

[4848] Pasquier, N. and Bastide, Y. and Taouil, R. and Lakhal, L. Discovering frequent closed itemsets for association rules. Proc. of the 7th Intl. Conf. on Database Theory (ICDT'99), pages 398--416, Jerusalem, Israel, 1999.

[4849] Pattipati, K. R. and Alexandridis, M. G. Application of heuristic search and information theory to sequential fault diagnosis. IEEE Trans. on Systems, Man, and Cybernetics, 20(4):872--887, 1990.

[4850] Pei, J. and Han, J. and Lu, H. J. and Nishio, S. and Tang, S. H-Mine: Hyper-Structure Mining of Frequent Patterns in Large Databases. ICDM01, pages 441--448, San Jose, CA, 2001.

[4851] Pei, J. and Han, J. and Mortazavi-Asl, B. and Chen, Q. and Dayal, U. and Hsu, M. PrefixSpan: Mining Sequential Patterns efficiently by prefix-projected pattern growth. Proc of the 17th Intl. Conf. on Data Engineering, Heidelberg, Germany, 2001.

[4852] Pei, J. and Han, J. and Mortazavi-Asl, B. and Zhu, H. Mining Access Patterns Efficiently from Web Logs. PAKDD00, pages 396--407, Kyoto, Japan, 2000.

[4853] Piatetsky-Shapiro, G. Discovery, Analysis and Presentation of Strong Rules. In G. Piatetsky-Shapiro and W. Frawley, editors, Knowledge Discovery in Databases, pages 229--248. MIT Press, Cambridge, MA, 1991.

[4854] Potter, C. and Klooster, S. and Steinbach, M. and Tan, P. N. and Kumar, V. and Shekhar, S. and Carvalho, C. Understanding Global Teleconnections of Climate to Regional Model Estimates of Amazon Ecosystem Carbon Fluxes. Global Change Biology, 10(5):693--703, 2004.

[4855] Potter, C. and Klooster, S. and Steinbach, M. and Tan, P. N. and Kumar, V. and Shekhar, S. and Myneni, R. and Nemani, R. Global Teleconnections of Ocean Climate to Terrestrial Carbon Flux. J. Geophysical Research, 108(D17), 2003.

[4856] Provost, F. J. and Fawcett, T. Analysis and Visualization of Classifier Performance: Comparison under Imprecise Class and Cost Distributions. KDD97, pages 43--48, Newport Beach, CA, 1997.

[4857] Pyle, D. Business Modeling and Data Mining. Morgan Kaufmann, San Francisco, CA, 2003.

[4858] Quinlan, J. R. C4.5: Programs for Machine Learning. Morgan-Kaufmann Publishers, San Mateo, CA, 1993.

[4859] Quinlan, J. R. Discovering rules by induction from large collection of examples. In Michie, D., editors, Expert Systems in the Micro Electronic Age. Edinburgh University Press, Edinburgh, UK, 1979.

[4860] Quinlan, J. R. Simplifying Decision Trees. Intl. J. Man-Machine Studies, 27:221--234, 1987.

[4861] Quinlan, J. R. and Rivest, R. L. Inferring Decision Trees Using the Minimum Description Length Principle. Information and Computation, 80(3):227--248, 1989.

[4862] Naren Ramakrishnan and Ananth Grama. Data Mining: From Serendipity to Science---Guest Editors' Introduction. IEEE Computer, 32(8):34-37, 1999.

[4863] Ramkumar, G. D and Ranka, S. and Tsur, S. Weighted Association Rules: Model and Algorithm. http://www.cs.ucla.edu/czdemo/tsur/, 1997.

[4864] Ramoni, M. and Sebastiani, P. Robust Bayes classifiers. Artificial Intelligence, 125:209--226, 2001.

[4865] van Rijsbergen, C. J. Information Retrieval. Butterworth-Heinemann, Newton, MA, 1978.

[4866] Roiger, R. and Geatz, M. Data Mining: A Tutorial Based Primer. Addison-Wesley, 2002.

[4867] Safavian, S. R. and Landgrebe, D. A Survey of Decision Tree Classifier Methodology. IEEE Trans. Systems, Man and Cybernetics, 22:660--674, 1998.

[4868] Sarawagi, S. and Thomas, S. and Agrawal, R. Integrating Mining with Relational Database Systems: Alternatives and Implications. SIGMOD98, pages 343--354, Seattle, WA, 1998.

[4869] Satou, K. and Shibayama, G. and Ono, T. and Yamamura, Y. and Furuichi,E. and Kuhara, S. and Takagi, T. Finding Association Rules on Heterogeneous Genome Data. Proc. of the Pacific Symp. on Biocomputing, pages 397--408, Hawaii, 1997.

[4870] Savasere, A. and Omiecinski, E. and Navathe, S. An efficient algorithm for mining association rules in large databases. Proc. of the 21st Int. Conf. on Very Large Databases (VLDB`95), pages 432-444, Zurich, Switzerland, 1995.

[4871] A. Savasere and E. Omiecinski and S. Navathe. Mining for Strong Negative Associations in a Large Database of Customer Transactions. ICDE98, pages 494--502, Orlando, Florida, 1998.

[4872] Schaffer, C. Overfitting avoidence as bias. Machine Learning, 10:153--178, 1993.

[4873] Schapire, R. E. The Boosting Approach to Machine Learning: An Overview. MSRI Workshop on Nonlinear Estimation and Classification, 2002.

[4874] Schölkopf, B. and Smola, A. J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, 2001.

[4875] Schuermann, J. and Doster, W. A decision-theoretic approach in hierarchical classifier design. Pattern Recognition, 17:359--369, 1984.

[4876] Advances in Distributed and Parallel Knowledge Discovery. AAAI Press, 2002.

[4877] Advances in Knowledge Discovery and Data Mining.. AAAI/MIT Press, 1996.

[4878] Rakesh Agrawal and Johannes Gehrke and Dimitrios Gunopulos and Prabhakar Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. In Laura M. Haas and Ashutosh Tiwary, editors, SIGMOD98, pages 94--105, Seattle, Washington, 1998. ACM Press.

[4879] Ming-Syan Chen and Jiawei Han and Philip S. Yu. Data Mining: An Overview from a Database Perspective. IEEE Transactions on Knowledge abd Data Engineering, 8(6):866-883, 1996.

[4880] Seno, M. and Karypis, G. LPMiner: An Algorithm for Finding Frequent Itemsets Using Length-Decreasing Support Constraint. ICDM01, pages 505--512, San Jose, CA, 2001.

[4881] Seno, M. and Karypis, G. SLPMiner: An Algorithm for Finding Frequent Sequential Patterns Using Length-Decreasing Support Constraint. ICDM02, pages 418--425, Maebashi City, Japan, 2002.

[4882] Shafer, J. C. and Agrawal, R. and Mehta, M. SPRINT: A Scalable Parallel Classifier for Data Mining. VLDB96, pages 544--555, Bombay, India, 1996.

[4883] Shintani, T. and Kitsuregawa, M. Hash based parallel algorithms for mining association rules. Proc of the 4th Intl. Conf. on Parallel and Distributed Info. Systems, pages 19--30, Miami Beach, FL, 1996.

[4884] Silberschatz, A. and Tuzhilin, A. What makes patterns interesting in knowledge discovery systems. IEEE Trans. on Knowledge and Data Engineering, 8(6):970--974, 1996.

[4885] Silverstein, C. and Brin, S. and Motwani, R. Beyond market baskets: Generalizing association rules to dependence rules. Data Mining and Knowledge Discovery, 2(1):39--68, 1998.

[4886] Simpson, E.-H. The Interpretation of Interaction in Contingency Tables. Journal of the Royal Statistical Society, B(13):238--241, 1951.

[4887] Singh, L. and Chen, B. and Haight, R. and Scheuermann, P. An Algorithm for Constrained Association Rule Mining in Semi-structured Data. PAKDD99, pages 148--158, Beijing, China, 1999.

[4888] Smyth, P. and Goodman, R. M. An Information Theoretic Approach to Rule Induction from Databases. IEEE Trans. on Knowledge and Data Engineering, 4(4):301--316, 1992.

[4889] Padhraic Smyth. Breaking out of the Black-Box: Research Challenges in Data Mining. DMKD01, 2001.

[4890] Padhraic Smyth and Daryl Pregibon and Christos Faloutsos. Data-driven evolution of data mining algorithms. Communications of the ACM, 45(8):33-37, 2002.

[4891] Srikant, R. and Agrawal, R. Mining Generalized Association Rules. VLDB95, pages 407--419, Zurich, Switzerland, 1995.

[4892] Srikant, R. and Agrawal, R. Mining Quantitative Association Rules in Large Relational Tables. SIGMOD96, pages 1--12, Montreal, Canada, 1996.

[4893] Srikant, R. and Agrawal, R. Mining Sequential Patterns: Generalizations and Performance Improvements. Proc. of the 5th Intl Conf. on Extending Database Technology (EDBT'96), pages 18--32, Avignon, France, 1996.

[4894] Srikant, R. and Vu, Q. and Agrawal, R. Mining Association Rules with Item Constraints. KDD97, pages 67--73, Newport Beach, CA, 1997.

[4895] Steinbach, M. and Tan, P. N. and Kumar, V. Support Envelopes: A Technique for Exploring the Structure of Association Patterns. KDD04, pages 296--305, Seattle, WA, 2004.

[4896] Steinbach, M. and Tan, P. N. and Xiong, H. and Kumar, V. Extending the Notion of Support. KDD04, pages 689--694, Seattle, WA, 2004.

[4897] Suzuki, E. Autonomous Discovery of Reliable Exception Rules. KDD97, pages 259--262, Newport Beach, CA, 1997.

[4898] Tan, P. N. and Kumar, V. Mining Association Patterns in Web Usage Data. Proc. of the Intl. Conf. on Advances in Infrastructure for e-Business, e-Education, e-Science and e-Medicine on the Internet, L'Aquila, Italy, 2002.

[4899] Tan, P. N. and Kumar, V. and Srivastava, J. Indirect Association: Mining Higher Order Dependencies in Data. PKDD00, pages 632--637, Lyon, France, 2000.

[4900] Tan, P. N. and Kumar, V. and Srivastava, J. Selecting the Right Interestingness Measure for Association Patterns. KDD02, pages 32--41, Edmonton, Canada, 2002.

[4901] Tan, P. N. and Steinbach, M. and Kumar, V. and Klooster, S. and Potter, C. and Torregrosa, A. Finding Spatio-Temporal Patterns in Earth Science Data. KDD 2001 Workshop on Temporal Data Mining, San Francisco, CA, 2001.

[4902] Tax, D. M. J. and Duin, R. P. W. Using Two-Class Classifiers for Multiclass Classification. Proc. of the 16th Intl. Conf. on Pattern Recognition (ICPR 2002), pages 124--127, Quebec, Canada, 2002.

[4903] Teng, W. G. and Hsieh, M. J. and Chen, M.-S. On the Mining of Substitution Rules for Statistically Dependent Items. ICDM02, pages 442--449, Maebashi City, Japan, 2002.

[4904] Toivonen, H and Klemettinen, M. and Ronkainen, P. and Hatonen, K. and Mannila, H. Pruning and Grouping Discovered Association Rules. ECML-95 Workshop on Statistics, Machine Learning and Knowledge Discovery in Databases, pages 47 -- 52, Heraklion, Greece, 1995.

[4905] Toivonen, H. Sampling Large Databases for Association Rules. VLDB96, pages 134--145, Bombay, India, 1996.

[4906] Tsur, S. and Ullman, J. and Abiteboul, S. and Clifton, C. and Motwani, R. and Nestorov, S. and Rosenthal, A. Query Flocks: A Generalization of Association Rule Mining. SIGMOD98, pages 1--12, Seattle, WA, 1998.

[4907] Tung, Anthony and Lu, H. J. and Han, Jiawei and Feng, Ling. Breaking the Barrier of Transactions: Mining Inter-Transaction Association Rules. KDD99, pages 297--301, San Diego, CA, 1999.

[4908] Utgoff, P. E. and Brodley, C. E. An incremental method for finding multivariate splits for decision trees. ICML90, pages 58--65, Austin, TX, 1990.

[4909] Vapnik, V. Statistical Learning Theory. John Wiley & Sons, New York, 1998.

[4910] Vapnik, V. The Nature of Statistical Learning Theory. Springer Verlag, New York, 1995.

[4911] Wang, H. and Zaniolo, C. CMP: A Fast Decision Tree Classifier Using Multivariate Predictions. ICDE00, pages 449--460, San Diego, CA, 2000.

[4912] Wang, K. and He, Y. and Han, J. Mining Frequent Itemsets Using Support Constraints. VLDB00, pages 43--52, Cairo, Egypt, 2000.

[4913] Wang, K. and Tay, S. H. and Liu, B. Interestingness-Based Interval Merger for Numeric Association Rules. KDD98, pages 121--128, New York, NY, 1998.

[4914] Wang, Q. R. and Suen, C. Y. Large tree classifier with heuristic search and global training. IEEE Trans. on Pattern Analysis and Machine Intelligence, 9(1):91--102, 1987.

[4915] Webb, A. R. Statistical Pattern Recognition. John Wiley & Sons, 2nd edition, 2002.

[4916] Webb, G. I. Discovering associations with numeric variables. KDD01, pages 383--388, San Francisco, CA, 2001.

[4917] Webb, G. I. Preliminary investigations into statistically valid exploratory rule discovery. Proc. of the Australasian Data Mining Workshop (AusDM03), Canberra, Australia, 2003.

[4918] Weiss, G. M. Mining with Rarity: A Unifying Framework. SIGKDD Explorations, 6(1):7--19, 2004.

[4919] Witten, I. H. and Frank, E. Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, 1999.

[4920] Wu, X. and Zhang, C. and Zhang, S. Mining Both Positive and Negative Association Rules. ACM Trans. on Information Systems, 22(3):381--405, 2004.

[4921] Xindong Wu and Philip S. Yu and Gregory Piatetsky-Shapiro. Data Mining: How Research Meets Practical Development?. Knowledge and Information Systems, 5(2):248-261, 2003.

[4922] Xiong, H. and He, X. and Ding, C. and Zhang, Y. and Kumar, V. and Holbrook, S. R. Identification of Functional Modules in Protein Complexes via Hyperclique Pattern Discovery. Proc. of the Pacific Symposium on Biocomputing, (PSB 2005), Maui, 2005.

[4923] Xiong, H. and Shekhar, S. and Tan, P. N. and Kumar, V. Exploiting a Support-based Upper Bound of Pearson's Correlation Coefficient for Efficiently Identifying Strongly Correlated Pairs. KDD04, pages 334-343, Seattle, WA, 2004.

[4924] Xiong, H. and Steinbach, M. and Tan, P. N. and Kumar, V. HICAP: Hierarchial Clustering with Pattern Preservation. SDM04, pages 279--290, Orlando, FL, 2004.

[4925] Xiong, H. and Tan, P. N. and Kumar, V. Mining Strong Affinity Association Patterns in Data Sets with Skewed Support Distribution. ICDM03, pages 387--394, Melbourne, FL, 2003.

[4926] Yan, X. and Han, J. gSpan: Graph-based Substructure Pattern Mining. ICDM02, pages 721--724, Maebashi City, Japan, 2002.

[4927] Yang, C. and Fayyad, U. M. and Bradley, P. S. Efficient discovery of error-tolerant frequent itemsets in high dimensions. KDD01, pages 194--203, San Francisco, CA, 2001.

[4928] Zadrozny, B. and Langford, J. C. and Abe, N. Cost-Sensitive Learning by Cost-Proportionate Example Weighting. ICDM03, pages 435--442, Melbourne, FL, 2003.

[4929] Zaki, M. J. Efficiently mining frequent trees in a forest. KDD02, pages 71--80, Edmonton, Canada, 2002.

[4930] Zaki, M. J. Generating Non-Redundant Association Rules. KDD00, pages 34--43, Boston, MA, 2000.

[4931] Zaki, M. J. Parallel and Distributed Association Mining: A Survey. IEEE Concurrency, special issue on Parallel Mechanisms for Data Mining, 7(4):14--25, 1999.

[4932] Zaki, M. J. and Orihara, M. Theoretical foundations of association rules. DMKD98, Seattle, WA, 1998.

[4933] Zaki, M. J. and Parthasarathy, S. and Ogihara, M. and Li, W. New Algorithms for Fast Discovery of Association Rules. KDD97, pages 283--286, Newport Beach, CA, 1997.

[4934] Zhang, H. and Padmanabhan, B. and Tuzhilin, A. On the Discovery of Significant Statistical Quantitative Rules. KDD04, pages 374--383, Seattle, WA, 2004.

[4935] Zhang, Z. and Lu, Y. and Zhang, B. An Effective Partioning-Combining Algorithm for Discovering Quantitative Association Rules. PAKDD97, Singapore, 1997.

[4936] Data Mining for Scientific and Engineering Applications. Kluwer Academic Publishers, 2001.

[4937] "C. Clifton and M. Kantarcioglu and J. Vaidya. Defining privacy for data mining. National Science Foundation Workshop on Next Generation Data Mining, pages 126--133, Baltimore, MD, 2002.

[4938] Large-Scale Parallel Data Mining. Springer, 2002.

[4939] Rakesh Agrawal and Ramakrishnan Srikant. Privacy-preserving data mining. SIGMOD00, pages 439--450, Dallas, Texas, 2000. ACM Press.

[4940] Mark S. Aldenderfer and Roger K. Blashfield. Cluster Analysis. Sage Publications, Los Angeles, 1985.

[4941] Michael R. Anderberg. Cluster Analysis for Applications. Academic Press, New York, 1973.

[4510] Andrews, R. and Diederich, J. and Tickle, A. A Survey and Critique of Techniques For Extracting Rules From Trained Artificial Neural Networks. Knowledge Based Systems, 8(6):373--389, 1995.

[4942] Phipps Arabie and Lawrence Hubert and G. De Soete. An overview of combinatorial data analysis. In P. Arabie and L. Hubert and G. De Soete, editors, Clustering and Classification, pages 188--217. World Scientific, Singapore, 1996.

[4943] G. Ball and D. Hall. A Clustering Technique for Summarizing Multivariate Data. Behavior Science, 12:153--155, 1967.

[4944] A. Banerjee and S. Merugu and I. S. Dhillon and J. Ghosh. Clustering with Bregman Divergences. In Michael W. Berry and Umeshwar Dayal and Chandrika Kamath and David Skillicorn, editors, SDM04, pages 234--245, Lake Buena Vista, FL, 2004.

[4945] Hans Hermann Bock and Edwin Diday. Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data (Studies in Classification, Data Analysis, and Knowledge Organization). Springer-Verlag Telos, 2000.

[4946] Ingwer Borg and Patrick Groenen. Modern Multidimensional Scaling---Theory and Applications. Springer-Verlag, 1997.

[4947] William G. Cochran. Sampling Techniques. John Wiley & Sons, 3rd edition, 1977.

[4948] James W. Demmel. Applied Numerical Linear Algebra. Society for Industrial & Applied Mathematics, 1997.

[4949] Pedro Domingos and Geoff Hulten. Mining high-speed data streams. KDD00, pages 71--80, Boston, Massachusetts, 2000. ACM Press.

[4950] Gaohua Gu, Feifang Hu and Huan Liu. Sampling and Its Application in Data Mining: A Survey. Technical report, TRA6/00, National University of Singapore, Singapore, 2000.

[4951] C. Giannella and J. Han and J. Pei and X. Yan and P. S. Yu. Mining Frequent Patterns in Data Streams at Multiple Time Granularities. In H. Kargupta and A. Joshi and K. Sivakumar and Y. Yesha, editors, Next Generation Data Mining, pages 191-212. AAAI/MIT, 2003.

[4952] D. J. Hand. Statistics and the Theory of Measurement. Journal of the Royal Statistical Society: Series A (Statistics in Society), 159(3):445-492, 1996.

[4953] Hillol Kargupta and Souptik Datta and Qi Wang and Krishnamoorthy Sivakumar. On the Privacy Preserving Properties of Random Data Perturbation Techniques. ICDM03, pages 99-106, Melbourne, Florida, 2003. IEEE Computer Society.

[4954] Daniel Kifer and Shai Ben-David and Johannes Gehrke. Detecting Change in Data Streams. VLDB04, pages 180-191, Toronto, Canada, 2004. Morgan Kaufmann.

[4955] David Krantz and R. Duncan Luce and Patrick Suppes and Amos Tversky. Foundations of Measurements: Volume 1: Additive and polynomial representations. Academic Press, New York, 1971.

[4956] Martin H. C. Law and Nan Zhang and Anil K. Jain. Nonlinear Manifold Learning for Data Streams.In Michael W. Berry and Umeshwar Dayal and Chandrika Kamath and David Skillicorn, editors, SDM04, Lake Buena Vista, Florida, 2004. SIAM.

[4957] B. W. Lindgren. Statistical Theory. CRC Press, 1993.

[4958] R. Duncan Luce and David Krantz and Patrick Suppes and Amos Tversky. Foundations of Measurements: Volume 3: Representation, Axiomatization, and Invariance. Academic Press, New York, 1990.

[4959] F. Olken and D. Rotem. Random Sampling from Databases---A Survey. Statistics & Computing, 5(1):25--42, 1995.

[4960] Jason Osborne. Notes on the Use of Data Transformations. Practical Assessment, Research & Evaluation, 28(6), 2002.

[4961] Christopher R. Palmer and Christos Faloutsos. Density biased sampling: An improved method for data mining and clustering. ACM SIGMOD Record, 29(2):82--92, 2000.

[4962] Spiros Papadimitriou and Anthony Brockwell and Christos Faloutsos. Adaptive, unsupervised stream mining. VLDB Journal, 13(3):222-239, 2004.

[4963] Foster J. Provost and David Jensen and Tim Oates. Efficient Progressive Sampling. KDD99, pages 23--32, 1999.

[4964] Stanley Smith Stevens. Measurement. In Gary Michael Maranell, editors, Scaling: A Sourcebook for Behavioral Scientists, pages 22--41. Aldine Publishing Co., Chicago, 1974.

[4965] Stanley Smith Stevens. On the Theory of Scales of Measurement. Science, 103(2684):677--680, 1946.

[4966] Patrick Suppes and David Krantz and R. Duncan Luce and Amos Tversky. Foundations of Measurements: Volume 2: Geometrical, Threshold, and Probabilistic Representations. Academic Press, New York, 1989.

[4967] Hannu Toivonen. Sampling Large Databases for Association Rules. In T. M. Vijayaraman and Alejandro P. Buchmann and C. Mohan and Nandlal L. Sarda, editors, VLDB96, pages 134--145, 1996. Morgan Kaufman.

[4968] John W. Tukey. On the Comparative Anatomy of Transformations. Annals of Mathematical Statistics, 28(3):602--632, 1957.

[4969] Vassilios S. Verykios and Elisa Bertino and Igor Nai Fovino and Loredana Parasiliti Provenza and Yucel Saygin and Yannis Theodoridis. State-of-the-art in privacy preserving data mining. SIGMOD Record, 33(1):50--57, 2004.

[4970] Richard Y. Wang and Mostapha Ziad and Yang W. Lee and Y. Richard Wang. Data Quality of The Kluwer International Series on Advances in Database Systems, Volume 23. Kluwer Academic Publishers, 2001.

[4971] Mohammed Javeed Zaki and Srinivasan Parthasarathy and Wei Li and Mitsunori Ogihara. Evaluation of Sampling for Data Mining of Association Rules. Technical report, TR617, Rensselaer Polytechnic Institute, 1996.

[4972] Feature Extraction, Construction and Selection: A Data Mining Perspective of Kluwer International Series in Engineering and Computer Science, 453. Kluwer Academic Publishers, 1998.

[4973] MIT Total Data Quality Management Program. web.mit.edu/tdqm/www/index.shtml, 2003.

[4974] Mihael Ankerst and Markus M. Breunig and Hans-Peter Kriegel and Jörg Sander. OPTICS: Ordering Points To Identify the Clustering Structure. In Alex Delis and Christos Faloutsos and Shahram Ghandeharizadeh, editors, SIGMOD99, pages 49--60, Philadelphia, Pennsylvania, 1999. ACM Press.

[4975] Daniel Barbará. Requirements for clustering data streams. SIGKDD Explorations Newsletter, 3(2):23--27, 2002.

[4976] Pavel Berkhin. Survey Of Clustering Data Mining Techniques. Technical report, Accrue Software, San Jose, CA, 2002.

[4977] J. Bilmes. A Gentle Tutorial on the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models. Technical report, ICSI-TR-97-021, University of California at Berkeley, 1997.

[4978] C. M. Bishop and M. Svensen and C. K. I. Williams. GTM: A principled alternative to the self-organizing map. In C. von der Malsburg and W. von Seelen and J. C. Vorbruggen and B. Sendhoff, editors, Artificial Neural Networks---ICANN96. Intl. Conf, Proc., pages 165-170. Springer-Verlag, Berlin, Germany, 1996.

[4979] Avrim Blum and Pat Langley. Selection of Relevant Features and Examples in Machine Learning. Artificial Intelligence, 97(1--2):245--271, 1997.

[4980] Daniel Boley. Principal Direction Divisive Partitioning. Data Mining and Knowledge Discovery, 2(4):325-344, 1998.

[4981] Paul S. Bradley and Usama M. Fayyad. Refining Initial Points for K-Means Clustering. In Jude W. Shavlik, editors, ICML98, pages 91--99, Madison, WI, 1998. Morgan Kaufmann Publishers Inc.

[4982] Paul S. Bradley and Usama M. Fayyad and Cory Reina. Scaling Clustering Algorithms to Large Databases. In Rakesh Agrawal and Paul Stolorz and Gregory Piatetsky-Shapiro, editors, KDD98, pages 9--15, New York City, 1998. AAAI Press.

[4983] Peter Cheeseman and James Kelly and Matthew Self and John Stutz and Will Taylor and Don Freeman. AutoClass: a Bayesian classification system. Readings in knowledge acquisition and learning: automating the construction and improvement of expert systems, pages 431--441. Morgan Kaufmann Publishers Inc., 1993.

[4984] James Dougherty and Ron Kohavi and Mehran Sahami. Supervised and Unsupervised Discretization of Continuous Features. ICML95, pages 194--202, 1995.

[4985] Duda, Robert O. and Hart, Peter E. and Stork, David G. Pattern Classification. John Wiley & Sons, Inc., New York, Second edition, 2001.

[4986] Tapio Elomaa and Juho Rousu. General and Efficient Multisplitting of Numerical Attributes. Machine Learning, 36(3):201--244, 1999.

[4987] Levent Ertöz and Michael Steinbach and Vipin Kumar. A New Shared Nearest Neighbor Clustering Algorithm and its Applications. Workshop on Clustering High Dimensional Data and its Applications, Proc. of Text Mine'01, First SIAM Intl. Conf. on Data Mining, Chicago, IL, USA, 2001.

[4988] Levent Ertöz and Michael Steinbach and Vipin Kumar. Finding Clusters of Different Sizes, Shapes, and Densities in Noisy, High Dimensional Data. SDM03, San Francisco, 2003. SIAM.

[4989] Martin Ester and Hans-Peter Kriegel and Jörg Sander and Michael Wimmer and Xiaowei Xu. Incremental Clustering for Mining in a Data Warehousing Environment. In Ashish Gupta and Oded Shmueli and Jennifer Widom, editors, VLDB98, pages 323--333, New York City, 1998. Morgan Kaufmann.

[4990] Martin Ester and Hans-Peter Kriegel and Jorg Sander and Xiaowei Xu. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Evangelos Simoudi and Jiawei Han and Usama M. Fayyad, editors, KDD96, pages 226--231, Portland, Oregon, 1996. AAAI Press.

[4991] Brian S. Everitt and Sabine Landau and Morven Leese. Cluster Analysis. Arnold Publishers, London, Fourth edition, 2001.

[4992] U. M. Fayyad and K. B. Irani. Multi-interval discretization of continuousvalued attributes for classification learning. Proc. 13th Int. Joint Conf. on Artificial Intelligence, pages 1022--1027, 1993. Morgan Kaufman.

[4993] Douglas Fisher. Iterative Optimization and Simplification of Hierarchical Clusterings. Journal of Artificial Intelligence Research, 4:147--179, 1996.

[4994] Douglas Fisher and Pat Langley. Conceptual clustering and its relation to numerical taxonomy. Artificial Intelligence and Statistics, :77--116, 1986.

[4995] Chris Fraley and Adrian E. Raftery. How Many Clusters? Which Clustering Method? Answers Via Model-Based Cluster Analysis. The Computer Journal, 41(8):578--588, 1998.

[4996] Venkatesh Ganti and Johannes Gehrke and Raghu Ramakrishnan. CACTUS--Clustering Categorical Data Using Summaries. KDD99, pages 73--83, 1999. ACM Press.

[4997] Allen Gersho and Robert M. Gray. Vector Quantization and Signal Compression, volume 159 of Kluwer International Series in Engineering and Computer Science. Kluwer Academic Publishers, 1992.

[4998] Joydeep Ghosh. Scalable Clustering Methods for Data Mining. In Nong Ye, editors, Handbook of Data Mining, pages 247--277. Lawrence Ealbaum Assoc, 2003.

[4999] David Gibson and Jon M. Kleinberg and Prabhakar Raghavan. Clustering Categorical Data: An Approach Based on Dynamical Systems. VLDB Journal, 8(3--4):222--236, 2000.

[5000] K. C. Gowda and G. Krishna. Agglomerative Clustering Using the Concept of Mutual Nearest Neighborhood. Pattern Recognition, 10(2):105--112, 1978.

[5001] Sudipto Guha and Adam Meyerson and Nina Mishra and Rajeev Motwani and Liadan O'Callaghan. Clustering Data Streams: Theory and Practice. IEEE Transactions on Knowledge and Data Engineering, 15(3):515--528, 2003.

[5002] Sudipto Guha and Rajeev Rastogi and Kyuseok Shim. CURE: An Efficient Clustering Algorithm for Large Databases. In Laura M. Haas and Ashutosh Tiwary, editors, SIGMOD98, pages 73--84, 1998. ACM Press.

[5003] Sudipto Guha and Rajeev Rastogi and Kyuseok Shim. ROCK: A Robust Clustering Algorithm for Categorical Attributes. In Masaru Kitsuregawa and Leszek Maciaszek and Mike Papazoglou and Calton Pu, editors, ICDE99, pages 512--521, 1999. IEEE Computer Society.

[5004] Maria Halkidi and Yannis Batistakis and Michalis Vazirgiannis. Cluster validity methods: part I. SIGMOD Record (ACM Special Interest Group on Management of Data), 31(2):40--45, 2002.

[5005] Maria Halkidi and Yannis Batistakis and Michalis Vazirgiannis. Clustering validity checking methods: part II. SIGMOD Record (ACM Special Interest Group on Management of Data), 31(3):19--27, 2002.

[5006] Greg Hamerly and Charles Elkan. Alternatives to the k-means algorithm that find better clusterings. CIKM02, pages 600--607, McLean, Virginia, 2002. ACM Press.

[5007] Jiawei Han and Micheline Kamber and Anthony Tung. Spatial Clustering Methods in Data Mining: A review. In Harvey J. Miller and Jiawei Han, editors, Geographic Data Mining and Knowledge Discovery, pages 188--217. Taylor and Francis, London, 2001.

[5008] John Hartigan. Clustering Algorithms. Wiley, New York, 1975.

[5009] Alexander Hinneburg and Daniel A. Keim. Optimal Grid-Clustering: Towards Breaking the Curse of Dimensionality in High-Dimensional Clustering. In M. P. Atkinson and M. E. Orlowska and P. Valduriez and S. B. Zdonik and M. L. Brodie, editors, VLDB99, pages 506--517, Edinburgh, Scotland, UK, 1999. Morgan Kaufmann.

[5010] Alexander Hinneburg and Daniel. A. Keim. An Efficient Approach to Clustering in Large Multimedia Databases with Noise. In Rakesh Agrawal and Paul Stolorz, editors, KDD98, pages 58--65, New York City, 1998. AAAI Press.

[5011] F. Hussain and H. Liu and C. L. Tan and M. Dash. TRC6/99: Discretization: an enabling technique. Technical report, National University of Singapore, Singapore, 1999.

[5012] Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data of Prentice Hall Advanced Reference Series. Prentice Hall, 1988. Book available online at http://www.cse.msu.edu/ : jain/Clustering_Jain_Dubes.pdf.

[5013] Anil K. Jain and M. Narasimha Murty and Patrick J. Flynn. Data clustering: A review. ACM Computing Surveys, 31(3):264--323, 1999.

[5014] Nicolas Jardine and Robin Sibson. Mathematical Taxonomy. Wiley, New York, 1971.

[5015] R. A. Jarvis and E. A. Patrick. Clustering Using a Similarity Measure Based on Shared Nearest Neighbors. IEEE Transactions on Computers, C-22(11):1025-1034, 1973.

[5016] I. T. Jolliffe. Principal Component Analysis. Springer Verlag, 2nd edition, 2002.

[5017] Istvan Jonyer and Diane J. Cook and Lawrence B. Holder. Graph-based hierarchical conceptual clustering. Journal of Machine Learning Research, 2:19--43, 2002.

[5018] Karin Kailing and Hans-Peter Kriegel and Peer Kröger. Density-Connected Subspace Clustering for High-Dimensional Data. In Michael W. Berry and Umeshwar Dayal and Chandrika Kamath and David B. Skillicorn, editors, SDM04, pages 428--439, Lake Buena Vista, Florida, 2004. SIAM.

[5019] George Karypis and Eui-Hong Han and Vipin Kumar. CHAMELEON: A Hierarchical Clustering Algorithm Using Dynamic Modeling. IEEE Computer, 32(8):68--75, 1999.

[5020] George Karypis and Eui-Hong Han and Vipin Kumar. Multilevel Refinement for Hierarchical Clustering. Technical report, TR 99-020, University of Minnesota, Minneapolis, MN, 1999.

[5021] George Karypis and Vipin Kumar. Multilevel k-way Partitioning Scheme for Irregular Graphs. Journal of Parallel and Distributed Computing, 48(1):96-129, 1998.

[5022] Leonard Kaufman and Peter J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster Analysis of Wiley Series in Probability and Statistics. John Wiley and Sons, New York, 1990.

[5023] Jon M. Kleinberg. An Impossibility Theorem for Clustering. Proc. of the 16th Annual Conf. on Neural Information Processing Systems, 2002.

[5024] Ron Kohavi and George H. John. Wrappers for Feature Subset Selection. Artificial Intelligence, 97(1--2):273--324, 1997.

[5025] Teuvo Kohonen and Thomas S. Huang and Manfred R. Schroeder. Self-Organizing Maps. Springer-Verlag, 2000.

[5026] Joseph B. Kruskal and Eric M. Uslaner. Multidimensional Scaling. Sage Publications, 1978.

[5027] Bjornar Larsen and Chinatsu Aone. Fast and Effective Text Mining Using Linear-Time Document Clustering. KDD99, pages 16--22, San Diego, California, 1999. ACM Press.

[5028] H. Liu and H. Motoda and L. Yu. Feature Extraction, Selection, and Construction. In Nong Ye, editors, The Handbook of Data Mining, pages 22--41. Lawrence Erlbaum Associates, Inc., Mahwah, NJ, 2003.

[5029] Huan Liu and Hiroshi Motoda. Feature Selection for Knowledge Discovery and Data Mining of Kluwer International Series in Engineering and Computer Science, 454. Kluwer Academic Publishers, 1998.

[5030] J. MacQueen. Some methods for classification and analysis of multivariate observations. In Le Cam, L. M. and Neyman, J., editors, Proc. of the 5th Berkeley Symp. on Mathematical Statistics and Probability, pages 281--297, 1967. University of California Press.

[5031] Michalski, R. S. and Stepp, R. E. Automated Construction of Classifications: Conceptual Clustering Versus Numerical Taxonomy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 5(4):396--409, 1983.

[5032] Glen W. Milligan. Clustering Validation: Results and Implications for Applied Analyses. In P. Arabie and L. Hubert and G. De Soete, editors, Clustering and Classification, pages 345--375. World Scientific, Singapore, 1996.

[5033] Boris Mirkin. Mathematical Classification and Clustering, volume 11 of Nonconvex Optimization and Its Applications. Kluwer Academic Publishers, 1996.

[5034] Nina Mishra and Dana Ron and Ram Swaminathan. A New Conceptual Clustering Framework. Machine Learning Journal, 56(1--3):115--151, 2004.

[5035] Luis Carlos Molina and Lluis Belanche and Angela Nebot. Feature Selection Algorithms: A Survey and Experimental Evaluation. ICDM02, 2002.

[5036] Fionn Murtagh. Clustering massive data sets. In J. Abello and P. M. Pardalos and M. G. C. Reisende, editors, Handbook of Massive Data Sets. Kluwer, 2000.

[5037] Fionn Murtagh. Multidimensional Clustering Algorithms. Physica-Verlag, Heidelberg and Vienna, 1985.

[5038] Harsha Nagesh and Sanjay Goil and Alok Choudhary. Parallel Algorithms for Clustering High-Dimensional Large-Scale Datasets. In Robert L. Grossman and Chandrika Kamath and Philip Kegelmeyer and Vipin Kumar and Raju Namburu, editors, Data Mining for Scientific and Engineering Applications, pages 335--356. Kluwer Academic Publishers, Dordrecht, Netherlands, 2001.

[5039] Raymond T. Ng and Jiawei Han. CLARANS: A Method for Clustering Objects for Spatial Data Mining. IEEE Transactions on Knowledge and Data Engineering, 14(5):1003--1016, 2002.

[5040] Dan Pelleg and Andrew W. Moore. X -means: Extending K -means with Efficient Estimation of the Number of Clusters. ICML00, pages 727--734, 2000. Morgan Kaufmann, San Francisco, CA.

[5041] Markus Peters and Mohammed J. Zaki. CLICKS: Clustering Categorical Data using K-partite Maximal Cliques. ICDE05, Tokyo, Japan, 2005.

[5042] Thomas C. Redman. Data Quality: The Field Guide. Digital Press, 2001.

[5043] Charles Romesburg. Cluster Analysis for Researchers. Life Time Learning, Belmont, CA, 1984.

[5044] J. Sander and M. Ester and H.-P. Kriegel and X. Xu. Density-Based Clustering in Spatial Databases: The Algorithm GDBSCAN and its Applications. Data Mining and Knowledge Discovery, 2(2):169--194, 1998.

[5045] Sergio M. Savaresi and Daniel Boley. A comparative analysis on the bisecting K-means and the PDDP clustering algorithms. Intelligent Data Analysis, 8(4):345-362, 2004.

[5046] Erich Schikuta and Martin Erhart. The BANG-Clustering System: Grid-Based Data Analysis. In Xiaohui Liu and Paul R. Cohen and Michael R. Berthold, editors, Advances in Intelligent Data Analysis, Reasoning about Data, Second Intl. Symposium, IDA-97, London in Lecture Notes in Computer Science, pages 513--524, 1997. Springer.

[5047] Gholamhosein Sheikholeslami and Surojit Chatterjee and Aidong Zhang. Wavecluster: A multi-resolution clustering approach for very large spatial databases. In Ashish Gupta and Oded Shmueli and Jennifer Widom, editors, VLDB98, pages 428--439, New York City, 1998. Morgan Kaufmann.

[5048] Sneath, Peter H. A. and Robert R. Sokal. Numerical Taxonomy. Freeman, San Francisco, 1971.

[5049] Helmuth Späth. Cluster Analysis Algorithms for Data Reduction and Classification of Objects, volume 4 of Computers and Their Application. Ellis Horwood Publishers, Chichester, 1980. ISBN 0-85312-141-9.

[5050] Ramakrishnan Srikant and Rakesh Agrawal. Mining Quantitative Association Rules in Large Relational Tables. In H. V. Jagadish and Inderpal Singh Mumick, editors, SIGMOD96, pages 1--12, Montreal, Quebec, Canada, 1996.

[5051] Michael Steinbach and George Karypis and Vipin Kumar. A Comparison of Document Clustering Techniques. Proc. of KDD Workshop on Text Mining, Proc. of the 6th Intl. Conf. on Knowledge Discovery and Data Mining, Boston, MA, 2000.

[5052] Robert E. Stepp and Ryszard S. Michalski. Conceptual clustering of structured objects: A goal-oriented approach. Artificial Intelligence, 28(1):43--69, 1986.

[5053] Alexander Strehl and Joydeep Ghosh. A Scalable Approach to Balanced, High-dimensional Clustering of Market-Baskets. Proc. of the 7th Intl. Conf. on High Performance Computing (HiPC 2000) in Lecture Notes in Computer Science, pages 525--536, Bangalore, India, 2000. Springer.

[5054] Charles T. Zahn. Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters. IEEE Transactions on Computers, C-20(1):68-86, 1971.

[5055] Tian Zhang and Raghu Ramakrishnan and Miron Livny. BIRCH: an efficient data clustering method for very large databases. In H. V. Jagadish and Inderpal Singh Mumick, editors, SIGMOD96, pages 103--114, Montreal, Quebec, Canada, 1996. ACM Press.

[5056] CLUTO 2.1.1: Software for Clustering High-Dimensional Datasets. /www.cs.umn.edu/ : karypis, 2003.

[4629] Agrawal, R. and Imielinski, T. and Swami, A. Database mining: A performance perspective. IEEE Transactions on Knowledge and Data Engineering, 5:914--925, 1993.

[5057] P. S. Bradley and U. M. Fayyad and C. Reina. Scaling EM (Expectation Maximization) Clustering to Large Databases. Technical report, MSR-TR-98-35, Microsoft Research, 1999.

[5058] D. A. Burn. Designing Effective Statistical Graphs. In C. R. Rao, editors, Handbook of Statistics 9. Elsevier/North-Holland, Amsterdam, The Netherlands, 1993.

[5059] Inderjit S. Dhillon and Yuqiang Guan and J. Kogan. Iterative Clustering of High Dimensional Text Data Augmented by Local Search. ICDM02, pages 131-138, 2002. IEEE Computer Society.

[5060] Inderjit S. Dhillon and Dharmendra S. Modha. Concept Decompositions for Large Sparse Text Data Using Clustering. Machine Learning, 42(1/2):143-175, 2001.

[5061] Michael Friendly. Gallery of Data Visualization. http://www.math.yorku.ca/SCS/Gallery/, 2005.

[5062] Eui-Hong Han and George Karypis and Vipin Kumar and Bamshad Mobasher. Hypergraph Based Clustering in High-Dimensional Data Sets: A Summary of Results. IEEE Data Eng. Bulletin, 21(1):15-22, 1998.

[5063] Konstantinos Kalpakis and Dhiral Gada and Vasundhara Puttagunta. Distance Measures for Effective Clustering of ARIMA Time-Series. ICDM01, pages 273-280, 2001. IEEE Computer Society.

[5064] Eamonn J. Keogh and Michael J. Pazzani. Scaling up dynamic time warping for datamining applications. Proc. of the 10th Intl. Conf. on Knowledge Discovery and Data Mining, pages 285-289, 2000.

[5065] Robert Spence. Information Visualization. ACM Press, New York, 2000.

[5066] Michael Steinbach and Pang-Ning Tan and Vipin Kumar and Steven Klooster and Christopher Potter. Discovery of climate indices using clustering. KDD '03: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 446--455, New York, NY, USA, 2003. ACM Press.

[5067] Edward R. Tufte. The Visual Display of Quantitative Information. Graphics Press, Cheshire, CT, 1986.

[5068] John W. Tukey. Exploratory data analysis. Addison-Wesley, 1977.

[5069] Velleman, Paul and Hoaglin, David. The ABC's of EDA: Applications, Basics, and Computing of Exploratory Data Analysis. Duxbury, 1981.

[5070] Bin Zhang and Meichun Hsu and Umeshwar Dayal. K-Harmonic Means---A Data Clustering Algorithm. Technical report, HPL-1999-124, Hewlett Packard Laboratories, 1999.

[5071] Ying Zhao and George Karypis. Empirical and theoretical comparisons of selected criterion functions for document clustering. Machine Learning, 55(3):311--331, 2004.

[5072] Information Visualization in Data Mining and Knowledge Discovery. Morgan Kaufmann Publishers, San Francisco, CA, 2001.

[5073] Mathematica 5.1. Wolfram Research, Inc.. http://www.wolfram.com/, 2005.

[5074] MATLAB 7.0. The MathWorks, Inc.. http://www.mathworks.com, 2005.

[5075] Microsoft Excel 2003. Microsoft, Inc.. http://www.microsoft.com/, 2003.

[4651] Agarwal, R. C. and Shafer, J. C. Parallel Mining of Association Rules. IEEE Transactions on Knowledge and Data Engineering, 8(6):962--969, 1998.

[4652] Aggarwal, C. C. and Sun, Z. and Yu, P. S. Online Generation of Profile Association Rules. KDD98, pages 129--133, New York, NY, 1996.

[4653] Aggarwal, C. C. and Yu, P. S. Mining Associations with the Collective Strength Approach. IEEE Trans. on Knowledge and Data Engineering, 13(6):863--873, 2001.

[4654] Aggarwal, C. C. and Yu, P. S. Mining Large Itemsets for Association Rules. Data Engineering Bulletin, 21(1):23--31, 1998.

[4655] Agrawal, R. and Imielinski, T. and Swami, A. Mining association rules between sets of items in large databases. Proc. ACM SIGMOD Intl. Conf. Management of Data, pages 207--216, Washington, DC, 1993.

[4656] Agrawal, R. and Srikant, R. Mining Sequential Patterns. Proc. of Intl. Conf. on Data Engineering, pages 3--14, Taipei, Taiwan, 1995.

[4657] Aha, D. W. A study of instance-based algorithms for supervised learning tasks: mathematical, empirical, and psychological evaluations. PhD thesis, University of California, Irvine, 1990.

[4658] Ali, K. and Manganaris, S. and Srikant, R. Partial Classification using Association Rules. KDD97, pages 115--118, Newport Beach, CA, 1997.

[4659] Alsabti, K. and Ranka, S. and Singh, V. CLOUDS: A Decision Tree Classifier for Large Datasets. KDD98, pages 2--8, New York, NY, 1998.

[4660] Aumann, Y. and Lindell, Y. A Statistical Theory for Quantitative Association Rules. KDD99, pages 261--270, San Diego, CA, 1999.

[5076] E. F. Codd and S. B. Codd and C. T. Smalley. Providing OLAP (On-line Analytical Processing) to User- Analysts: An IT Mandate. White Paper, E.F. Codd and Associates, 1993.

[5077] Jim Gray and Surajit Chaudhuri and Adam Bosworth and Andrew Layman and Don Reichart and Murali Venkatrao and Frank Pellow and Hamid Pirahesh. Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals. Journal Data Mining and Knowledge Discovery, 1(1):29--53, 1997.

[5078] Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems. McGraw-Hill, 3rd edition, 2002.

[5079] Arie Shoshani. OLAP and statistical databases: similarities and differences. Proc. of the Sixteenth ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems, pages 185--196, 1997. ACM Press.

[5080] Zhong, N. and Yao, Y. Y. and Ohsuga, S. Peculiarity Oriented Multi-database Mining. PKDD99, pages 136--146, Prague, Czech Republic, 1999.

[5081] R: A language and environment for statistical computing and graphics. The R Project for Statistical Computing. http://www.r-project.org/, 2005.

[4679] Allwein, E. L. and Schapire, R. E. and Singer, Y. Reducing Multiclass to Binary: A Unifying Approach to Margin Classifiers. Journal of Machine Learning Research, 1:113--141, 2000.

[4680] Antonie, M-L. and Zaďane, O. R. Mining Positive and Negative Association Rules: An Approach for Confined Rules. PKDD04, pages 27--38, Pisa, Italy, 2004.

[5082] S-PLUS. Insightful Corporation. http://www.insightful.com, 2005.

[5083] SAS: Statistical Analysis System. SAS Institute Inc.. http://www.sas.com/, 2005.

[4683] Ayres, J. and Flannick, J. and Gehrke, J. and Yiu, T. Sequential Pattern mining using a bitmap representation. KDD02, pages 429-435, Edmonton, Canada, 2002.

[4684] Barbará, D. and Couto, J. and Jajodia, S. and Wu, N. ADAM: A Testbed for Exploring the Use of Data Mining in Intrusion Detection. SIGMOD Record, 30(4):15--24, 2001.

[4685] Bay, S. D. and Pazzani, M. Detecting Group Differences: Mining Contrast Sets. Data Mining and Knowledge Discovery, 5(3):213--246, 2001.

[4686] Bayardo, R. Efficiently Mining Long Patterns from Databases. SIGMOD98, pages 85--93, Seattle, WA, 1998.

[4687] Bayardo, R. and Agrawal, R. Mining the Most Interesting Rules. KDD99, pages 145--153, San Diego, CA, 1999.

[4688] Benjamini, Y. and Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal Royal Statistical Society B, 57(1):289--300, 1995.

[4689] Breslow, L. A. and Aha, D. W. Simplifying Decision Trees: A Survey. Knowledge Engineering Review, 12(1):1--40, 1997.

[5084] SPSS: Statistical Package for the Social Sciences. SPSS, Inc.. http://www.spss.com/, 2005.

[4691] Bennett, K. and Campbell, C. Support Vector Machines: Hype or Hallelujah. SIGKDD Explorations, 2(2):1--13, 2000.

[4692] Berry, M. J. A. and Linoff, G. Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management. Wiley Computer Publishing, 2nd edition, 2004.

[4693] Bishop, C. M. Neural Networks for Pattern Recognition. Oxford University Press, Oxford, U.K., 1995.

[4694] Bolton, R. J. and Hand, D. J. and Adams, N. M. Determining Hit Rate in Pattern Search. Proc. of the ESF Exploratory Workshop on Pattern Detection and Discovery in Data Mining, pages 36--48, London, UK, 2002.

[4695] Boulicaut, J-F. and Bykowski, A. and Jeudy, B. Towards the Tractable Discovery of Association Rules with Negations. Proc. of the 4th Intl. Conf on Flexible Query Answering Systems FQAS'00, pages 425--434, Warsaw, Poland, 2000.

[4696] Bradley, A. P. The use of the area under the ROC curve in the Evaluation of Machine Learning Algorithms. Pattern Recognition, 30(7):1145--1149, 1997.

[4697] Paul S. Bradley and Johannes Gehrke and Raghu Ramakrishnan and Ramakrishnan Srikant. Scaling mining algorithms to large databases. Communications of the ACM, 45(8):38-43, 2002.

[4698] Breiman, L. Bagging Predictors. Machine Learning, 24(2):123--140, 1996.

[4699] Breiman, L. Bias, Variance, and Arcing Classifiers. Technical report, 486, University of California, Berkeley, CA, 1996.

[4700] Breiman, L. Random Forests. Machine Learning, 45(1):5--32, 2001.

[4701] Breiman, L. and Friedman, J. H. and Olshen, R. and Stone, C. J. Classification and Regression Trees. Chapman & Hall, New York, 1984.

[4702] Brin, S. and Motwani, R. and Silverstein, C. Beyond market baskets: Generalizing association rules to correlations. Proc. ACM SIGMOD Intl. Conf. Management of Data, pages 265--276, Tucson, AZ, 1997.

[4703] Brin, S. and Motwani, R. and Ullman, J. and Tsur, S. Dynamic Itemset Counting and Implication Rules for market basket data. SIGMOD97, pages 255--264, Tucson, AZ, 1997.

[4704] Buntine, W. Learning classification trees. In Hand, D. J., editors, Artificial Intelligence Frontiers in Statistics, pages 182--201, 1993. Chapman & Hall, London.

[4705] Burges, C. J. C. A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 2(2):121--167, 1998.

[4706] Cai, C. H. and Fu, A. and Cheng, C. H. and Kwong, W. W. Mining Association Rules with Weighted Items. Proc. of IEEE Intl. Database Engineering and Applications Symp., pages 68--77, Cardiff, Wales, 1998.

[4707] Cant u' -Paz, E. and Kamath, C. Using evolutionary algorithms to induce oblique decision trees. Proc. of the Genetic and Evolutionary Computation Conf., pages 1053--1060, San Francisco, CA, 2000.

[4708] Chakrabarti, S. Mining the Web: Discovering Knowledge from Hypertext Data. Morgan Kaufmann, San Francisco, CA, 2003.

[4709] Chawla, N. V. and Bowyer, K. W. and Hall, L. O. and Kegelmeyer, W. P. SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16:321--357, 2002.

[4710] Chawla, N. V. and Japkowicz, N. and Kolcz, A. Editorial: Special Issue on Learning from Imbalanced Data Sets. SIGKDD Explorations, 6(1):1--6, 2004.

[4711] Chen, Q. and Dayal, U. and Hsu, M. A Distributed OLAP infrastructure for E-Commerce. Proc. of the 4th IFCIS Intl. Conf. on Cooperative Information Systems, pages 209--220, Edinburgh, Scotland, 1999.

[4712] Cheng, H. and Yan, X. and Han, J. IncSpan: incremental mining of sequential patterns in large database. KDD04, pages 527-532, Seattle, WA, 2004.

[4713] Cherkassky, V. and Mulier, F. Learning from Data: Concepts, Theory, and Methods. Wiley Interscience, 1998.

[4714] Cheung, D. C. and Lee, S. D. and Kao, B. A General Incremental Technique for Maintaining Discovered Association Rules. Proc. of the 5th Intl. Conf. on Database Systems for Advanced Applications, pages 185--194, Melbourne, Australia, 1997.

[4715] Clark, P. and Boswell, R. Rule Induction with CN2: Some Recent Improvements. Machine Learning: Proc. of the 5th European Conf. (EWSL-91), pages 151--163, 1991.

[4716] Clark, P. and Niblett, T. The CN2 Induction Algorithm. Machine Learning, 3(4):261--283, 1989.

[4717] Cohen, W. W. Fast Effective Rule Induction. ICML95, pages 115--123, Tahoe City, CA, 1995.

[4718] Cooley, R. and Tan, P. N. and Srivastava, J. Discovery of Interesting Usage Patterns from Web Data. In Spiliopoulou, M. and Masand, B., editors, Advances in Web Usage Analysis and User Profiling, pages 163--182. Lecture Notes in Computer Science, 2000.

[4719] Cost, S. and Salzberg, S. A Weighted Nearest Neighbor Algorithm for Learning with Symbolic Features. Machine Learning, 10:57--78, 1993.

[4720] Cover, T. M. and Hart, P. E. Nearest Neighbor Pattern Classification. Knowledge Based Systems, 8(6):373--389, 1995.

[4721] Cristianini, N. and Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, 2000.

[4722] Dietterich, T. G. Ensemble Methods in Machine Learning. First Intl. Workshop on Multiple Classifier Systems, Cagliari, Italy, 2000.

[4723] Dietterich, T. G. and Bakiri, G. Solving Multiclass Learning Problems via Error-Correcting Output Codes. Journal of Artificial Intelligence Research, 2:263--286, 1995.

[4724] Dokas, P. and Ertöz, L. and Kumar, V. and Lazarevic, A. and Srivastava, J. and Tan, P. N. Data Mining for Network Intrusion Detection. Proc. NSF Workshop on Next Generation Data Mining, Baltimore, MD, 2002.

[4725] Domingos, P. MetaCost: A General Method for Making Classifiers Cost-Sensitive. KDD99, pages 155--164, San Diego, CA, 1999.

[4726] Domingos, P. The RISE system: Conquering without separating. Proc. of the 6th IEEE Intl. Conf. on Tools with Artificial Intelligence, pages 704--707, New Orleans, LA, 1994.

[4727] Domingos, P. The Role of Occam's Razor in Knowledge Discovery. Data Mining and Knowledge Discovery, 3(4):409--425, 1999.

[4728] Domingos, P. and Pazzani, M. On the Optimality of the Simple Bayesian Classifier under Zero-One Loss. Machine Learning, 29(2-3):103--130, 1997.

[4729] Dong, G. and Li, J. Efficient Mining of Emerging Patterns: Discovering Trends and Differences. KDD99, pages 43--52, San Diego, CA, 1999.

[4730] Dong, G. and Li, J. Interestingness of discovered association rules in terms of neighborhood-based unexpectedness. PAKDD98, pages 72--86, Melbourne, Australia, 1998.

[4731] Drummond, C. and Holte, R. C. C4.5, Class imbalance, and Cost sensitivity: Why under-sampling beats over-sampling. ICML'2004 Workshop on Learning from Imbalanced Data Sets II, Washington, DC, 2003.

[4732] Duda, R. O. and Hart, P. E. and Stork, D. G. Pattern Classification. John Wiley & Sons, Inc., New York, 2nd edition, 2001.

[4733] DuMouchel, W. and Pregibon, D. Empirical Bayes Screening for Multi-Item Associations. KDD01, pages 67--76, San Francisco, CA, 2001.

[4734] Dunham, M. H. Data Mining: Introductory and Advanced Topics. Prentice Hall, 2002.

[4735] Dunkel, B. and Soparkar, N. Data Organization and Access for Efficient Data Mining. ICDE99, pages 522--529, Sydney, Australia, 1999.

[4736] Efron, B. and Tibshirani, R. Cross-validation and the Bootstrap: Estimating the Error Rate of a Prediction Rule. Technical report, Stanford University, 1995.

[4737] Elkan, C. The Foundations of Cost-Sensitive Learning. Proc. of the 17th Intl. Joint Conf. on Artificial Intelligence, pages 973--978, Seattle, WA, 2001.

[4738] Esposito, F. and Malerba, D. and Semeraro, G. A Comparative Analysis of Methods for Pruning Decision Trees. IEEE Trans. Pattern Analysis and Machine Intelligence, 19(5):476--491, 1997.

[4739] F u ¨ rnkranz, J. and Widmer, G. Incremental reduced error pruning. ICML94, pages 70--77, New Brunswick, NJ, 1994.

[4740] Fabris, C. C. and Freitas, A. A. Discovering surprising patterns by detecting occurrences of Simpson's paradox. Proc. of the 19th SGES Intl. Conf. on Knowledge-Based Systems and Applied Artificial Intelligence), pages 148--160, Cambridge, UK, 1999.

[4741] Fan, W. and Stolfo, S. J. and Zhang, J. and Chan, P. K. AdaCost: misclassification cost-sensitive boosting. ICML99, pages 97--105, Bled, Slovenia, 1999.

[4742] Usama M. Fayyad and Gregory Piatetsky-Shapiro and Padhraic Smyth. From Data Mining to Knowledge Discovery: An Overview. Advances in Knowledge Discovery and Data Mining, pages 1-34. AAAI Press, 1996.

[4743] Feng, L. and Lu, H. J. and Yu, J. X. and Han, J. Mining inter-transaction associations with templates. CIKM99, pages 225--233, Kansas City, Missouri, 1999.

[4744] Ferri, C. and Flach, P. and Hernandez-Orallo, J. Learning Decision Trees Using the Area Under the ROC Curve. ICML02, pages 139--146, Sydney, Australia, 2002.

[4745] Fisher, R. A. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7:179--188, 1936.

[4746] Freitas, A. A. Understanding the crucial differences between classification and discovery of association rules---a position paper. SIGKDD Explorations, 2(1):65--69, 2000.

[4747] Freund, Y. and Schapire, R. E. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119--139, 1997.

[4748] Friedman, J. H. Data Mining and Statistics: What's the Connection?. Unpublished. www-stat.stanford.edu/ : jhf/ftp/dm-stat.ps, 1997.

[4749] Friedman, J. H. and Fisher, N. I. Bump hunting in high-dimensional data. Statistics and Computing, 9(2):123--143, 1999.

[4750] Fukuda, T. and Morimoto, Y. and Morishita, S. and Tokuyama, T. Mining Optimized Association Rules for Numeric Attributes. PODS96, pages 182--191, Montreal, Canada, 1996.

[4751] Fukunaga, K. Introduction to Statistical Pattern Recognition. Academic Press, New York, 1990.

[4752] Garofalakis, M. N. and Rastogi, R. and Shim, K. SPIRIT: Sequential Pattern Mining with Regular Expression Constraints. VLDB99, pages 223--234, Edinburgh, Scotland, 1999.

[4753] Gehrke, J. and Ramakrishnan, R. and Ganti, V. RainForest---A Framework for Fast Decision Tree Construction of Large Datasets. Data Mining and Knowledge Discovery, 4(2/3):127--162, 2000.

[4754] Clark Glymour and David Madigan and Daryl Pregibon and Padhraic Smyth. Statistical Themes and Lessons for Data Mining. Data Mining and Knowledge Discovery, 1(1):11--28, 1997.

[4755] Robert L. Grossman and Mark F. Hornick and Gregor Meyer. Data mining standards initiatives. Communications of the ACM, 45(8):59-61, 2002.

[4756] Gunopulos, D. and Khardon, R. and Mannila, H. and Toivonen, H. Data Mining, Hypergraph Transversals, and Machine Learning. PODS97, pages 209--216, Tucson, AZ, 1997.

[4757] Han, E.-H. and Karypis, G. and Kumar, V. Min-Apriori: An Algorithm for Finding Association Rules in Data with Continuous Attributes. http://www.cs.umn.edu/han, 1997.

[4758] Han, E.-H. and Karypis, G. and Kumar, V. Scalable Parallel Data Mining for Association Rules. SIGMOD97, pages 277--288, Tucson, AZ, 1997.

[4759] Han, E.-H. and Karypis, G. and Kumar, V. Text Categorization Using Weight Adjusted k-Nearest Neighbor Classification. PAKDD01, Lyon, France, 2001.

[4760] Han, E.-H. and Karypis, G. and Kumar, V. and Mobasher, B. Clustering Based on Association Rule Hypergraphs. DMKD97, Tucson, AZ, 1997.

[4761] Han, J. and Fu, Y. Mining Multiple-Level Association Rules in Large Databases. IEEE Trans. on Knowledge and Data Engineering, 11(5):798--804, 1999.

[4762] Han, J. and Fu, Y. and Koperski, K. and Wang, W. and Zaďane, O. R. DMQL: A data mining query language for relational databases. DMKD96, Montreal, Canada, 1996.

[4763] Han, J. and Kamber, M. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, San Francisco, 2001.

[4764] Han, J. and Pei, J. and Yin, Y. Mining Frequent Patterns without Candidate Generation. Proc. ACM-SIGMOD Int. Conf. on Management of Data (SIGMOD'00), pages 1--12, Dallas, TX, 2000.

[4765] Jiawei Han and Russ B. Altman and Vipin Kumar and Heikki Mannila and Daryl Pregibon. Emerging scientific applications in data mining. Communications of the ACM, 45(8):54-58, 2002.

[4766] Hand, D. J. Data Mining: Statistics and More?. The American Statistician, 52(2):112--118, 1998.

[4767] Hand, D. J. and Mannila, H. and Smyth, P. Principles of Data Mining. MIT Press, 2001.

[4768] Hastie, T. and Tibshirani, R. Classification by pairwise coupling. Annals of Statistics, 26(2):451--471, 1998.

[4769] Hastie, T. and Tibshirani, R. and Friedman, J. H. The Elements of Statistical Learning: Data Mining, Inference, Prediction. Springer, New York, 2001.

[4770] Hearst, M. Trends & Controversies: Support Vector Machines. IEEE Intelligent Systems, 13(4):18--28, 1998.

[4771] Heath, D. and Kasif, S. and Salzberg, S. Induction of Oblique Decision Trees. Proc. of the 13th Intl. Joint Conf. on Artificial Intelligence, pages 1002--1007, Chambery, France, 1993.

[4772] Heckerman, D. Bayesian Networks for Data Mining. Data Mining and Knowledge Discovery, 1(1):79--119, 1997.

[4773] Hidber, C. Online Association Rule Mining. SIGMOD99, pages 145--156, Philadelphia, PA, 1999.

[4774] Hilderman, R. J. and Hamilton, H. J. Knowledge Discovery and Measures of Interest. Kluwer Academic Publishers, 2001.

[4775] Hipp, J. and Guntzer, U. and Nakhaeizadeh, G. Algorithms for Association Rule Mining---A General Survey. SigKDD Explorations, 2(1):58--64, 2000.

[4776] Hofmann, H. and Siebes, A. P. J. M. and Wilhelm, A. F. X. Visualizing Association Rules with Interactive Mosaic Plots. KDD00, pages 227--235, Boston, MA, 2000.

[4777] Holt, J. D. and Chung, S. M. Efficient Mining of Association Rules in Text Databases. CIKM99, pages 234--242, Kansas City, Missouri, 1999.

[4778] Holte, R. C. Very Simple Classification Rules Perform Well on Most Commonly Used Data sets. Machine Learning, 11:63--91, 1993.

[4779] Houtsma, M. and Swami, A. Set-oriented Mining for Association Rules in Relational Databases. ICDE95, pages 25--33, Taipei, Taiwan, 1995.

[4780] Huang, Y. and Shekhar, S. and Xiong, H. Discovering Co-location Patterns from Spatial Datasets: A General Approach. IEEE Trans. on Knowledge and Data Engineering, 16(12):1472--1485, 2004.

[4781] Imielinski, T. and Virmani, A. and Abdulghani, A. DataMine: Application Programming Interface and Query Language for Database Mining. KDD96, pages 256--262, Portland, Oregon, 1996.

[4782] Inokuchi, A. and Washio, T. and Motoda, H. An Apriori-based Algorithm for Mining Frequent Substructures from Graph Data. PKDD00, pages 13--23, Lyon, France, 2000.

[4783] Jain, A. K. and Duin, R. P. W. and Mao, J. Statistical Pattern Recognition: A Review. IEEE Tran. Patt. Anal. and Mach. Intellig., 22(1):4--37, 2000.

[4784] Japkowicz, N. The Class Imbalance Problem: Significance and Strategies. Proc. of the 2000 Intl. Conf. on Artificial Intelligence: Special Track on Inductive Learning, pages 111--117, Las Vegas, NV, 2000.

[4785] Jaroszewicz, S. and Simovici, D. Interestingness of Frequent Itemsets Using Bayesian Networks as Background Knowledge. KDD04, pages 178--186, Seattle, WA, 2004.

[4786] Jensen, D. and Cohen, P. R. Multiple Comparisons in Induction Algorithms. Machine Learning, 38(3):309--338, 2000.

[4787] Joshi, M. V. On Evaluating Performance of Classifiers for Rare Classes. ICDM02, Maebashi City, Japan, 2002.

[4788] Joshi, M. V. and Agarwal, R. C. and Kumar, V. Mining Needles in a Haystack: Classifying Rare Classes via Two-Phase Rule Induction. SIGMOD01, pages 91-102, Santa Barbara, CA, 2001.

[4789] Joshi, M. V. and Agarwal, R. C. and Kumar, V. Predicting rare classes: can boosting make any weak learner strong?. KDD02, pages 297-306, Edmonton, Canada, 2002.

[4790] Joshi, M. V. and Karypis, G. and Kumar, V. A Universal Formulation of Sequential Patterns. Proc. of the KDD'2001 workshop on Temporal Data Mining, San Francisco, CA, 2001.

[4791] Joshi, M. V. and Karypis, G. and Kumar, V. ScalParC: A New Scalable and Efficient Parallel Classification Algorithm for Mining Large Datasets. Proc. of 12th Intl. Parallel Processing Symp. (IPPS/SPDP), pages 573-579, Orlando, FL, 1998.

[4792] Joshi, M. V. and Kumar, V. CREDOS: Classification Using Ripple Down Structure (A Case for Rare Classes). SDM04, pages 321-332, Orlando, FL, 2004.

[4793] Kamber, M. and Shinghal, R. Evaluating the Interestingness of Characteristic Rules. KDD96, pages 263--266, Portland, Oregon, 1996.

[4794] Kantardzic, M. Data Mining: Concepts, Models, Methods, and Algorithms. Wiley-IEEE Press, Piscataway, NJ, 2003.

[4795] Kass, G. V. An Exploratory Technique for Investigating Large Quantities of Categorical Data. Applied Statistics, 29:119--127, 1980.

[4796] Kim, B. and Landgrebe, D. Hierarchical decision classifiers in high-dimensional and large class data. IEEE Trans. on Geoscience and Remote Sensing, 29(4):518--528, 1991.

[4797] Klemettinen, M. A Knowledge Discovery Methodology for Telecommunication Network Alarm Databases. PhD thesis, University of Helsinki, 1999.

[4798] Kohavi, R. A Study on Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. Proc. of the 15th Intl. Joint Conf. on Artificial Intelligence, pages 1137--1145, Montreal, Canada, 1995.

[4799] Kong, E. B. and Dietterich, T. G. Error-Correcting Output Coding Corrects Bias and Variance. ICML95, pages 313--321, Tahoe City, CA, 1995.

[4800] Kosters, W. A. and Marchiori, E. and Oerlemans, A. Mining Clusters with Association Rules. The 3rd Symp. on Intelligent Data Analysis (IDA99), pages 39--50, Amsterdam, 1999.

[4801] Kubat, M. and Matwin, S. Addressing the Curse of Imbalanced Training Sets: One Sided Selection. ICML97, pages 179--186, Nashville, TN, 1997.

[4802] Kulkarni, S. R. and Lugosi, G. and Venkatesh, S. S. Learning Pattern Classification---A Survey. IEEE Tran. Inf. Theory, 44(6):2178--2206, 1998.

[4803] Kumar, V. and Joshi, M. V. and Han, E.-H. and Tan, P. N. and Steinbach, M. High Performance Data Mining. High Performance Computing for Computational Science (VECPAR 2002), pages 111-125. Springer, 2002.

[4804] Kuok, C. M. and Fu, A. and Wong, M. H. Mining Fuzzy Association Rules in Databases. ACM SIGMOD Record, 27(1):41--46, 1998.

[4805] Kuramochi, M. and Karypis, G. Discovering Frequent Geometric Subgraphs. ICDM02, pages 258--265, Maebashi City, Japan, 2002.

[4806] Kuramochi, M. and Karypis, G. Frequent Subgraph Discovery. ICDM01, pages 313--320, San Jose, CA, 2001.

[4807] Diane Lambert. What Use is Statistics for Massive Data?. ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, pages 54-62, 2000.

[4808] Landeweerd, G. and Timmers, T. and Gersema, E. and Bins, M. and Halic, M. Binary tree versus single level tree classification of white blood cells. Pattern Recognition, 16:571--577, 1983.

[4809] Langley, P. and Iba, W. and Thompson, K. An analysis of Bayesian classifiers. Proc. of the 10th National Conf. on Artificial Intelligence, pages 223--228, 1992.

[4810] Lee, W. and Stolfo, S. J. and Mok, K. W. Adaptive Intrusion Detection: A Data Mining Approach. Artificial Intelligence Review, 14(6):533--567, 2000.

[4811] Lent, B. and Swami, A. and Widom, J. Clustering Association Rules. ICDE97, pages 220--231, Birmingham, U.K, 1997.

[4812] Lewis, D. D. Naive Bayes at Forty: The Independence Assumption in Information Retrieval. Proc. of the 10th European Conf. on Machine Learning (ECML 1998), pages 4--15, 1998.

[4813] Li, W. and Han, J. and Pei, J. CMAR: Accurate and Efficient Classification Based on Multiple Class-association Rules. ICDM01, pages 369--376, San Jose, CA, 2001.

[4814] Liu, B. and Hsu, W. and Chen, S. Using General Impressions to Analyze Discovered Classification Rules. KDD97, pages 31--36, Newport Beach, CA, 1997.

[4815] Liu, B. and Hsu, W. and Ma, Y. Integrating Classification and Association Rule Mining. KDD98, pages 80--86, New York, NY, 1998.

[4816] Liu, B. and Hsu, W. and Ma, Y. Mining association rules with multiple minimum supports. KDD99, pages 125--134, San Diego, CA, 1999.

[4817] Liu, B. and Hsu, W. and Ma, Y. Pruning and Summarizing the Discovered Associations. KDD99, pages 125--134, San Diego, CA, 1999.

[4818] Mangasarian, O. Data Mining via Support Vector Machines. Technical report, Technical Report 01-05, Data Mining Institute, 2001.

[4819] Mannila, H. and Toivonen, H. and Verkamo, A. I. Discovery of Frequent Episodes in Event Sequences. Data Mining and Knowledge Discovery, 1(3):259--289, 1997.

[4820] Marcus, A. and Maletic, J. I. and Lin, K.-I. Ordinal association rules for error identification in data sets. CIKM01, pages 589--591, Atlanta, GA, 2001.

[4821] Margineantu, D. D. and Dietterich, T. G. Learning Decision Trees for Loss Minimization in Multi-Class Problems.Technical report, 99-30-03, Oregon State University, 1999.

[4822] Megiddo, N. and Srikant, R. Discovering Predictive Association Rules. KDD98, pages 274--278, New York, 1998.

[4823] Mehta, M. and Agrawal, R. and Rissanen, J. SLIQ: A Fast Scalable Classifier for Data Mining. Proc. of the 5th Intl. Conf. on Extending Database Technology, pages 18--32, Avignon, France, 1996.

[4824] Meo, R. and Psaila, G. and Ceri, S. A New SQL-like Operator for Mining Association Rules. VLDB96, pages 122--133, Bombay, India, 1996.

[4825] Michalski, R. S. A theory and methodology of inductive learning. Artificial Intelligence, 20:111--116, 1983.

[4826] Michalski, R. S. and Mozetic, I. and Hong, J. and Lavrac, N. The Multi-Purpose Incremental Learning System AQ15 and Its Testing Application to Three Medical Domains. Proc. of 5th National Conf. on Artificial Intelligence, Orlando, 1986.

[4827] Michie, D. and Spiegelhalter, D. J. and Taylor, C. C. Machine Learning, Neural and Statistical Classification. Ellis Horwood, Upper Saddle River, NJ, 1994.

[4828] Miller, R. J. and Yang, Y. Association Rules over Interval Data. SIGMOD97, pages 452--461, Tucson, AZ, 1997.

[4829] Mingers, J. An empirical comparison of pruning methods for decision tree induction. Machine Learning, 4:227--243, 1989.

[4830] Mingers, J. Expert Systems---Rule Induction with Statistical Data. J Operational Research Society, 38:39--47, 1987.

[4831] Mitchell, T. Machine Learning. McGraw-Hill, Boston, MA, 1997.

[4832] Moret, B. M. E. Decision Trees and Diagrams. Computing Surveys, 14(4):593--623, 1982.

[4833] Morimoto, Y. and Fukuda, T. and Matsuzawa, H. and Tokuyama, T. and Yoda, K. Algorithms for mining association rules for binary segmentations of huge categorical databases. VLDB98, pages 380--391, New York, 1998.

[4834] Mosteller, F. Association and Estimation in Contingency Tables. Journal of the American Statistical Association, 63:1--28, 1968.

[4835] Mueller, A. Fast sequential and parallel algorithms for association rule mining: A comparison. Technical report, CS-TR-3515, University of Maryland, 1995.

[4836] Muggleton, S. Foundations of Inductive Logic Programming. Prentice Hall, Englewood Cliffs, NJ, 1995.

[4837] Murthy, S. K. Automatic Construction of Decision Trees from Data: A Multi-Disciplinary Survey. Data Mining and Knowledge Discovery, 2(4):345--389, 1998.

[4838] Murthy, S. K. and Kasif, S. and Salzberg, S. A system for induction of oblique decision trees. J of Artificial Intelligence Research, 2:1--33, 1994.

[4839] Ng, R. T. and Lakshmanan, L. V. S. and Han, J. and Pang, A. Exploratory Mining and Pruning Optimizations of Constrained Association Rules. SIGMOD98, pages 13--24, Seattle, WA, 1998.

[4840] Niblett, T. Constructing decision trees in noisy domains. Proc. of the 2nd European Working Session on Learning, pages 67--78, Bled, Yugoslavia, 1987.

[4841] Niblett, T. and Bratko, I. Learning Decision Rules in Noisy Domains. In Bramer, M., editors, Research and Development in Expert Systems III, Cambridge, 1986. Cambridge University Press.

[4842] Omiecinski, E. Alternative Interest Measures for Mining Associations in Databases. IEEE Trans. on Knowledge and Data Engineering, 15(1):57--69, 2003.

[4843] Ozden, B. and Ramaswamy, S. and Silberschatz, A. Cyclic Association Rules. DE98, pages 412--421, Orlando, FL, 1998.

[4844] Ozgur, A. and Tan, P. N. and Kumar, V. RBA: An Integrated Framework for Regression based on Association Rules. SDM04, pages 210--221, Orlando, FL, 2004.

[4845] Park, J. S. and Chen, M.-S. and Yu, P. S. An effective hash-based algorithm for mining association rules. SIGMOD Record, 25(2):175--186, 1995.

[4846] Parr Rud, O. Data Mining Cookbook: Modeling Data for Marketing, Risk and Customer Relationship Management. John Wiley & Sons, New York, NY, 2001.

[4847] Parthasarathy, S. and Coatney, M. Efficient Discovery of Common Substructures in Macromolecules. ICDM02, pages 362--369, Maebashi City, Japan, 2002.

[4848] Pasquier, N. and Bastide, Y. and Taouil, R. and Lakhal, L. Discovering frequent closed itemsets for association rules. Proc. of the 7th Intl. Conf. on Database Theory (ICDT'99), pages 398--416, Jerusalem, Israel, 1999.

[4849] Pattipati, K. R. and Alexandridis, M. G. Application of heuristic search and information theory to sequential fault diagnosis. IEEE Trans. on Systems, Man, and Cybernetics, 20(4):872--887, 1990.

[4850] Pei, J. and Han, J. and Lu, H. J. and Nishio, S. and Tang, S. H-Mine: Hyper-Structure Mining of Frequent Patterns in Large Databases. ICDM01, pages 441--448, San Jose, CA, 2001.

[4851] Pei, J. and Han, J. and Mortazavi-Asl, B. and Chen, Q. and Dayal, U. and Hsu, M. PrefixSpan: Mining Sequential Patterns efficiently by prefix-projected pattern growth. Proc of the 17th Intl. Conf. on Data Engineering, Heidelberg, Germany, 2001.

[4852] Pei, J. and Han, J. and Mortazavi-Asl, B. and Zhu, H. Mining Access Patterns Efficiently from Web Logs. PAKDD00, pages 396--407, Kyoto, Japan, 2000.

[4853] Piatetsky-Shapiro, G. Discovery, Analysis and Presentation of Strong Rules. In G. Piatetsky-Shapiro and W. Frawley, editors, Knowledge Discovery in Databases, pages 229--248. MIT Press, Cambridge, MA, 1991.

[4854] Potter, C. and Klooster, S. and Steinbach, M. and Tan, P. N. and Kumar, V. and Shekhar, S. and Carvalho, C. Understanding Global Teleconnections of Climate to Regional Model Estimates of Amazon Ecosystem Carbon Fluxes. Global Change Biology, 10(5):693--703, 2004.

[4855] Potter, C. and Klooster, S. and Steinbach, M. and Tan, P. N. and Kumar, V. and Shekhar, S. and Myneni, R. and Nemani, R. Global Teleconnections of Ocean Climate to Terrestrial Carbon Flux. J. Geophysical Research, 108(D17), 2003.

[4856] Provost, F. J. and Fawcett, T. Analysis and Visualization of Classifier Performance: Comparison under Imprecise Class and Cost Distributions. KDD97, pages 43--48, Newport Beach, CA, 1997.

[4857] Pyle, D. Business Modeling and Data Mining. Morgan Kaufmann, San Francisco, CA, 2003.

[4858] Quinlan, J. R. C4.5: Programs for Machine Learning. Morgan-Kaufmann Publishers, San Mateo, CA, 1993.

[4859] Quinlan, J. R. Discovering rules by induction from large collection of examples. In Michie, D., editors, Expert Systems in the Micro Electronic Age. Edinburgh University Press, Edinburgh, UK, 1979.

[4860] Quinlan, J. R. Simplifying Decision Trees. Intl. J. Man-Machine Studies, 27:221--234, 1987.

[4861] Quinlan, J. R. and Rivest, R. L. Inferring Decision Trees Using the Minimum Description Length Principle. Information and Computation, 80(3):227--248, 1989.

[4862] Naren Ramakrishnan and Ananth Grama. Data Mining: From Serendipity to Science---Guest Editors' Introduction. IEEE Computer, 32(8):34-37, 1999.

[4863] Ramkumar, G. D and Ranka, S. and Tsur, S. Weighted Association Rules: Model and Algorithm. http://www.cs.ucla.edu/czdemo/tsur/, 1997.

[4864] Ramoni, M. and Sebastiani, P. Robust Bayes classifiers. Artificial Intelligence, 125:209--226, 2001.

[4865] van Rijsbergen, C. J. Information Retrieval. Butterworth-Heinemann, Newton, MA, 1978.

[4866] Roiger, R. and Geatz, M. Data Mining: A Tutorial Based Primer. Addison-Wesley, 2002.

[4867] Safavian, S. R. and Landgrebe, D. A Survey of Decision Tree Classifier Methodology. IEEE Trans. Systems, Man and Cybernetics, 22:660--674, 1998.

[4868] Sarawagi, S. and Thomas, S. and Agrawal, R. Integrating Mining with Relational Database Systems: Alternatives and Implications. SIGMOD98, pages 343--354, Seattle, WA, 1998.

[4869] Satou, K. and Shibayama, G. and Ono, T. and Yamamura, Y. and Furuichi,E. and Kuhara, S. and Takagi, T. Finding Association Rules on Heterogeneous Genome Data. Proc. of the Pacific Symp. on Biocomputing, pages 397--408, Hawaii, 1997.

[4870] Savasere, A. and Omiecinski, E. and Navathe, S. An efficient algorithm for mining association rules in large databases. Proc. of the 21st Int. Conf. on Very Large Databases (VLDB`95), pages 432-444, Zurich, Switzerland, 1995.

[4871] A. Savasere and E. Omiecinski and S. Navathe. Mining for Strong Negative Associations in a Large Database of Customer Transactions. ICDE98, pages 494--502, Orlando, Florida, 1998.

[4872] Schaffer, C. Overfitting avoidence as bias. Machine Learning, 10:153--178, 1993.

[4873] Schapire, R. E. The Boosting Approach to Machine Learning: An Overview. MSRI Workshop on Nonlinear Estimation and Classification, 2002.

[4874] Schölkopf, B. and Smola, A. J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, 2001.

[4875] Schuermann, J. and Doster, W. A decision-theoretic approach in hierarchical classifier design. Pattern Recognition, 17:359--369, 1984.

[4876] Advances in Distributed and Parallel Knowledge Discovery. AAAI Press, 2002.

[4877] Advances in Knowledge Discovery and Data Mining.. AAAI/MIT Press, 1996.

[4878] Rakesh Agrawal and Johannes Gehrke and Dimitrios Gunopulos and Prabhakar Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. In Laura M. Haas and Ashutosh Tiwary, editors, SIGMOD98, pages 94--105, Seattle, Washington, 1998. ACM Press.

[4879] Ming-Syan Chen and Jiawei Han and Philip S. Yu. Data Mining: An Overview from a Database Perspective. IEEE Transactions on Knowledge abd Data Engineering, 8(6):866-883, 1996.

[4880] Seno, M. and Karypis, G. LPMiner: An Algorithm for Finding Frequent Itemsets Using Length-Decreasing Support Constraint. ICDM01, pages 505--512, San Jose, CA, 2001.

[4881] Seno, M. and Karypis, G. SLPMiner: An Algorithm for Finding Frequent Sequential Patterns Using Length-Decreasing Support Constraint. ICDM02, pages 418--425, Maebashi City, Japan, 2002.

[4882] Shafer, J. C. and Agrawal, R. and Mehta, M. SPRINT: A Scalable Parallel Classifier for Data Mining. VLDB96, pages 544--555, Bombay, India, 1996.

[4883] Shintani, T. and Kitsuregawa, M. Hash based parallel algorithms for mining association rules. Proc of the 4th Intl. Conf. on Parallel and Distributed Info. Systems, pages 19--30, Miami Beach, FL, 1996.

[4884] Silberschatz, A. and Tuzhilin, A. What makes patterns interesting in knowledge discovery systems. IEEE Trans. on Knowledge and Data Engineering, 8(6):970--974, 1996.

[4885] Silverstein, C. and Brin, S. and Motwani, R. Beyond market baskets: Generalizing association rules to dependence rules. Data Mining and Knowledge Discovery, 2(1):39--68, 1998.

[4886] Simpson, E.-H. The Interpretation of Interaction in Contingency Tables. Journal of the Royal Statistical Society, B(13):238--241, 1951.

[4887] Singh, L. and Chen, B. and Haight, R. and Scheuermann, P. An Algorithm for Constrained Association Rule Mining in Semi-structured Data. PAKDD99, pages 148--158, Beijing, China, 1999.

[4888] Smyth, P. and Goodman, R. M. An Information Theoretic Approach to Rule Induction from Databases. IEEE Trans. on Knowledge and Data Engineering, 4(4):301--316, 1992.

[4889] Padhraic Smyth. Breaking out of the Black-Box: Research Challenges in Data Mining. DMKD01, 2001.

[4890] Padhraic Smyth and Daryl Pregibon and Christos Faloutsos. Data-driven evolution of data mining algorithms. Communications of the ACM, 45(8):33-37, 2002.

[4891] Srikant, R. and Agrawal, R. Mining Generalized Association Rules. VLDB95, pages 407--419, Zurich, Switzerland, 1995.

[4892] Srikant, R. and Agrawal, R. Mining Quantitative Association Rules in Large Relational Tables. SIGMOD96, pages 1--12, Montreal, Canada, 1996.

[4893] Srikant, R. and Agrawal, R. Mining Sequential Patterns: Generalizations and Performance Improvements. Proc. of the 5th Intl Conf. on Extending Database Technology (EDBT'96), pages 18--32, Avignon, France, 1996.

[4894] Srikant, R. and Vu, Q. and Agrawal, R. Mining Association Rules with Item Constraints. KDD97, pages 67--73, Newport Beach, CA, 1997.

[4895] Steinbach, M. and Tan, P. N. and Kumar, V. Support Envelopes: A Technique for Exploring the Structure of Association Patterns. KDD04, pages 296--305, Seattle, WA, 2004.

[4896] Steinbach, M. and Tan, P. N. and Xiong, H. and Kumar, V. Extending the Notion of Support. KDD04, pages 689--694, Seattle, WA, 2004.

[4897] Suzuki, E. Autonomous Discovery of Reliable Exception Rules. KDD97, pages 259--262, Newport Beach, CA, 1997.

[4898] Tan, P. N. and Kumar, V. Mining Association Patterns in Web Usage Data. Proc. of the Intl. Conf. on Advances in Infrastructure for e-Business, e-Education, e-Science and e-Medicine on the Internet, L'Aquila, Italy, 2002.

[4899] Tan, P. N. and Kumar, V. and Srivastava, J. Indirect Association: Mining Higher Order Dependencies in Data. PKDD00, pages 632--637, Lyon, France, 2000.

[4900] Tan, P. N. and Kumar, V. and Srivastava, J. Selecting the Right Interestingness Measure for Association Patterns. KDD02, pages 32--41, Edmonton, Canada, 2002.

[4901] Tan, P. N. and Steinbach, M. and Kumar, V. and Klooster, S. and Potter, C. and Torregrosa, A. Finding Spatio-Temporal Patterns in Earth Science Data. KDD 2001 Workshop on Temporal Data Mining, San Francisco, CA, 2001.

[4902] Tax, D. M. J. and Duin, R. P. W. Using Two-Class Classifiers for Multiclass Classification. Proc. of the 16th Intl. Conf. on Pattern Recognition (ICPR 2002), pages 124--127, Quebec, Canada, 2002.

[4903] Teng, W. G. and Hsieh, M. J. and Chen, M.-S. On the Mining of Substitution Rules for Statistically Dependent Items. ICDM02, pages 442--449, Maebashi City, Japan, 2002.

[4904] Toivonen, H and Klemettinen, M. and Ronkainen, P. and Hatonen, K. and Mannila, H. Pruning and Grouping Discovered Association Rules. ECML-95 Workshop on Statistics, Machine Learning and Knowledge Discovery in Databases, pages 47 -- 52, Heraklion, Greece, 1995.

[4905] Toivonen, H. Sampling Large Databases for Association Rules. VLDB96, pages 134--145, Bombay, India, 1996.

[4906] Tsur, S. and Ullman, J. and Abiteboul, S. and Clifton, C. and Motwani, R. and Nestorov, S. and Rosenthal, A. Query Flocks: A Generalization of Association Rule Mining. SIGMOD98, pages 1--12, Seattle, WA, 1998.

[4907] Tung, Anthony and Lu, H. J. and Han, Jiawei and Feng, Ling. Breaking the Barrier of Transactions: Mining Inter-Transaction Association Rules. KDD99, pages 297--301, San Diego, CA, 1999.

[4908] Utgoff, P. E. and Brodley, C. E. An incremental method for finding multivariate splits for decision trees. ICML90, pages 58--65, Austin, TX, 1990.

[4909] Vapnik, V. Statistical Learning Theory. John Wiley & Sons, New York, 1998.

[4910] Vapnik, V. The Nature of Statistical Learning Theory. Springer Verlag, New York, 1995.

[4911] Wang, H. and Zaniolo, C. CMP: A Fast Decision Tree Classifier Using Multivariate Predictions. ICDE00, pages 449--460, San Diego, CA, 2000.

[4912] Wang, K. and He, Y. and Han, J. Mining Frequent Itemsets Using Support Constraints. VLDB00, pages 43--52, Cairo, Egypt, 2000.

[4913] Wang, K. and Tay, S. H. and Liu, B. Interestingness-Based Interval Merger for Numeric Association Rules. KDD98, pages 121--128, New York, NY, 1998.

[4914] Wang, Q. R. and Suen, C. Y. Large tree classifier with heuristic search and global training. IEEE Trans. on Pattern Analysis and Machine Intelligence, 9(1):91--102, 1987.

[4915] Webb, A. R. Statistical Pattern Recognition. John Wiley & Sons, 2nd edition, 2002.

[4916] Webb, G. I. Discovering associations with numeric variables. KDD01, pages 383--388, San Francisco, CA, 2001.

[4917] Webb, G. I. Preliminary investigations into statistically valid exploratory rule discovery. Proc. of the Australasian Data Mining Workshop (AusDM03), Canberra, Australia, 2003.

[4918] Weiss, G. M. Mining with Rarity: A Unifying Framework. SIGKDD Explorations, 6(1):7--19, 2004.

[4919] Witten, I. H. and Frank, E. Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, 1999.

[4920] Wu, X. and Zhang, C. and Zhang, S. Mining Both Positive and Negative Association Rules. ACM Trans. on Information Systems, 22(3):381--405, 2004.

[4921] Xindong Wu and Philip S. Yu and Gregory Piatetsky-Shapiro. Data Mining: How Research Meets Practical Development?. Knowledge and Information Systems, 5(2):248-261, 2003.

[4922] Xiong, H. and He, X. and Ding, C. and Zhang, Y. and Kumar, V. and Holbrook, S. R. Identification of Functional Modules in Protein Complexes via Hyperclique Pattern Discovery. Proc. of the Pacific Symposium on Biocomputing, (PSB 2005), Maui, 2005.

[4923] Xiong, H. and Shekhar, S. and Tan, P. N. and Kumar, V. Exploiting a Support-based Upper Bound of Pearson's Correlation Coefficient for Efficiently Identifying Strongly Correlated Pairs. KDD04, pages 334-343, Seattle, WA, 2004.

[4924] Xiong, H. and Steinbach, M. and Tan, P. N. and Kumar, V. HICAP: Hierarchial Clustering with Pattern Preservation. SDM04, pages 279--290, Orlando, FL, 2004.

[4925] Xiong, H. and Tan, P. N. and Kumar, V. Mining Strong Affinity Association Patterns in Data Sets with Skewed Support Distribution. ICDM03, pages 387--394, Melbourne, FL, 2003.

[4926] Yan, X. and Han, J. gSpan: Graph-based Substructure Pattern Mining. ICDM02, pages 721--724, Maebashi City, Japan, 2002.

[4927] Yang, C. and Fayyad, U. M. and Bradley, P. S. Efficient discovery of error-tolerant frequent itemsets in high dimensions. KDD01, pages 194--203, San Francisco, CA, 2001.

[4928] Zadrozny, B. and Langford, J. C. and Abe, N. Cost-Sensitive Learning by Cost-Proportionate Example Weighting. ICDM03, pages 435--442, Melbourne, FL, 2003.

[4929] Zaki, M. J. Efficiently mining frequent trees in a forest. KDD02, pages 71--80, Edmonton, Canada, 2002.

[4930] Zaki, M. J. Generating Non-Redundant Association Rules. KDD00, pages 34--43, Boston, MA, 2000.

[4931] Zaki, M. J. Parallel and Distributed Association Mining: A Survey. IEEE Concurrency, special issue on Parallel Mechanisms for Data Mining, 7(4):14--25, 1999.

[4932] Zaki, M. J. and Orihara, M. Theoretical foundations of association rules. DMKD98, Seattle, WA, 1998.

[4933] Zaki, M. J. and Parthasarathy, S. and Ogihara, M. and Li, W. New Algorithms for Fast Discovery of Association Rules. KDD97, pages 283--286, Newport Beach, CA, 1997.

[4934] Zhang, H. and Padmanabhan, B. and Tuzhilin, A. On the Discovery of Significant Statistical Quantitative Rules. KDD04, pages 374--383, Seattle, WA, 2004.

[4935] Zhang, Z. and Lu, Y. and Zhang, B. An Effective Partioning-Combining Algorithm for Discovering Quantitative Association Rules. PAKDD97, Singapore, 1997.

[4936] Data Mining for Scientific and Engineering Applications. Kluwer Academic Publishers, 2001.

[4937] "C. Clifton and M. Kantarcioglu and J. Vaidya. Defining privacy for data mining. National Science Foundation Workshop on Next Generation Data Mining, pages 126--133, Baltimore, MD, 2002.

[4938] Large-Scale Parallel Data Mining. Springer, 2002.

[4939] Rakesh Agrawal and Ramakrishnan Srikant. Privacy-preserving data mining. SIGMOD00, pages 439--450, Dallas, Texas, 2000. ACM Press.

[4940] Mark S. Aldenderfer and Roger K. Blashfield. Cluster Analysis. Sage Publications, Los Angeles, 1985.

[4941] Michael R. Anderberg. Cluster Analysis for Applications. Academic Press, New York, 1973.

[4510] Andrews, R. and Diederich, J. and Tickle, A. A Survey and Critique of Techniques For Extracting Rules From Trained Artificial Neural Networks. Knowledge Based Systems, 8(6):373--389, 1995.

[4942] Phipps Arabie and Lawrence Hubert and G. De Soete. An overview of combinatorial data analysis. In P. Arabie and L. Hubert and G. De Soete, editors, Clustering and Classification, pages 188--217. World Scientific, Singapore, 1996.

[4943] G. Ball and D. Hall. A Clustering Technique for Summarizing Multivariate Data. Behavior Science, 12:153--155, 1967.

[4944] A. Banerjee and S. Merugu and I. S. Dhillon and J. Ghosh. Clustering with Bregman Divergences. In Michael W. Berry and Umeshwar Dayal and Chandrika Kamath and David Skillicorn, editors, SDM04, pages 234--245, Lake Buena Vista, FL, 2004.

[4945] Hans Hermann Bock and Edwin Diday. Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data (Studies in Classification, Data Analysis, and Knowledge Organization). Springer-Verlag Telos, 2000.

[4946] Ingwer Borg and Patrick Groenen. Modern Multidimensional Scaling---Theory and Applications. Springer-Verlag, 1997.

[4947] William G. Cochran. Sampling Techniques. John Wiley & Sons, 3rd edition, 1977.

[4948] James W. Demmel. Applied Numerical Linear Algebra. Society for Industrial & Applied Mathematics, 1997.

[4949] Pedro Domingos and Geoff Hulten. Mining high-speed data streams. KDD00, pages 71--80, Boston, Massachusetts, 2000. ACM Press.

[4950] Gaohua Gu, Feifang Hu and Huan Liu. Sampling and Its Application in Data Mining: A Survey. Technical report, TRA6/00, National University of Singapore, Singapore, 2000.

[4951] C. Giannella and J. Han and J. Pei and X. Yan and P. S. Yu. Mining Frequent Patterns in Data Streams at Multiple Time Granularities. In H. Kargupta and A. Joshi and K. Sivakumar and Y. Yesha, editors, Next Generation Data Mining, pages 191-212. AAAI/MIT, 2003.

[4952] D. J. Hand. Statistics and the Theory of Measurement. Journal of the Royal Statistical Society: Series A (Statistics in Society), 159(3):445-492, 1996.

[4953] Hillol Kargupta and Souptik Datta and Qi Wang and Krishnamoorthy Sivakumar. On the Privacy Preserving Properties of Random Data Perturbation Techniques. ICDM03, pages 99-106, Melbourne, Florida, 2003. IEEE Computer Society.

[4954] Daniel Kifer and Shai Ben-David and Johannes Gehrke. Detecting Change in Data Streams. VLDB04, pages 180-191, Toronto, Canada, 2004. Morgan Kaufmann.

[4955] David Krantz and R. Duncan Luce and Patrick Suppes and Amos Tversky. Foundations of Measurements: Volume 1: Additive and polynomial representations. Academic Press, New York, 1971.

[4956] Martin H. C. Law and Nan Zhang and Anil K. Jain. Nonlinear Manifold Learning for Data Streams.In Michael W. Berry and Umeshwar Dayal and Chandrika Kamath and David Skillicorn, editors, SDM04, Lake Buena Vista, Florida, 2004. SIAM.

[4957] B. W. Lindgren. Statistical Theory. CRC Press, 1993.

[4958] R. Duncan Luce and David Krantz and Patrick Suppes and Amos Tversky. Foundations of Measurements: Volume 3: Representation, Axiomatization, and Invariance. Academic Press, New York, 1990.

[4959] F. Olken and D. Rotem. Random Sampling from Databases---A Survey. Statistics & Computing, 5(1):25--42, 1995.

[4960] Jason Osborne. Notes on the Use of Data Transformations. Practical Assessment, Research & Evaluation, 28(6), 2002.

[4961] Christopher R. Palmer and Christos Faloutsos. Density biased sampling: An improved method for data mining and clustering. ACM SIGMOD Record, 29(2):82--92, 2000.

[4962] Spiros Papadimitriou and Anthony Brockwell and Christos Faloutsos. Adaptive, unsupervised stream mining. VLDB Journal, 13(3):222-239, 2004.

[4963] Foster J. Provost and David Jensen and Tim Oates. Efficient Progressive Sampling. KDD99, pages 23--32, 1999.

[4964] Stanley Smith Stevens. Measurement. In Gary Michael Maranell, editors, Scaling: A Sourcebook for Behavioral Scientists, pages 22--41. Aldine Publishing Co., Chicago, 1974.

[4965] Stanley Smith Stevens. On the Theory of Scales of Measurement. Science, 103(2684):677--680, 1946.

[4966] Patrick Suppes and David Krantz and R. Duncan Luce and Amos Tversky. Foundations of Measurements: Volume 2: Geometrical, Threshold, and Probabilistic Representations. Academic Press, New York, 1989.

[4967] Hannu Toivonen. Sampling Large Databases for Association Rules. In T. M. Vijayaraman and Alejandro P. Buchmann and C. Mohan and Nandlal L. Sarda, editors, VLDB96, pages 134--145, 1996. Morgan Kaufman.

[4968] John W. Tukey. On the Comparative Anatomy of Transformations. Annals of Mathematical Statistics, 28(3):602--632, 1957.

[4969] Vassilios S. Verykios and Elisa Bertino and Igor Nai Fovino and Loredana Parasiliti Provenza and Yucel Saygin and Yannis Theodoridis. State-of-the-art in privacy preserving data mining. SIGMOD Record, 33(1):50--57, 2004.

[4970] Richard Y. Wang and Mostapha Ziad and Yang W. Lee and Y. Richard Wang. Data Quality of The Kluwer International Series on Advances in Database Systems, Volume 23. Kluwer Academic Publishers, 2001.

[4971] Mohammed Javeed Zaki and Srinivasan Parthasarathy and Wei Li and Mitsunori Ogihara. Evaluation of Sampling for Data Mining of Association Rules. Technical report, TR617, Rensselaer Polytechnic Institute, 1996.

[4972] Feature Extraction, Construction and Selection: A Data Mining Perspective of Kluwer International Series in Engineering and Computer Science, 453. Kluwer Academic Publishers, 1998.

[4973] MIT Total Data Quality Management Program. web.mit.edu/tdqm/www/index.shtml, 2003.

[4974] Mihael Ankerst and Markus M. Breunig and Hans-Peter Kriegel and Jörg Sander. OPTICS: Ordering Points To Identify the Clustering Structure. In Alex Delis and Christos Faloutsos and Shahram Ghandeharizadeh, editors, SIGMOD99, pages 49--60, Philadelphia, Pennsylvania, 1999. ACM Press.

[4975] Daniel Barbará. Requirements for clustering data streams. SIGKDD Explorations Newsletter, 3(2):23--27, 2002.

[4976] Pavel Berkhin. Survey Of Clustering Data Mining Techniques. Technical report, Accrue Software, San Jose, CA, 2002.

[4977] J. Bilmes. A Gentle Tutorial on the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models. Technical report, ICSI-TR-97-021, University of California at Berkeley, 1997.

[4978] C. M. Bishop and M. Svensen and C. K. I. Williams. GTM: A principled alternative to the self-organizing map. In C. von der Malsburg and W. von Seelen and J. C. Vorbruggen and B. Sendhoff, editors, Artificial Neural Networks---ICANN96. Intl. Conf, Proc., pages 165-170. Springer-Verlag, Berlin, Germany, 1996.

[4979] Avrim Blum and Pat Langley. Selection of Relevant Features and Examples in Machine Learning. Artificial Intelligence, 97(1--2):245--271, 1997.

[4980] Daniel Boley. Principal Direction Divisive Partitioning. Data Mining and Knowledge Discovery, 2(4):325-344, 1998.

[4981] Paul S. Bradley and Usama M. Fayyad. Refining Initial Points for K-Means Clustering. In Jude W. Shavlik, editors, ICML98, pages 91--99, Madison, WI, 1998. Morgan Kaufmann Publishers Inc.

[4982] Paul S. Bradley and Usama M. Fayyad and Cory Reina. Scaling Clustering Algorithms to Large Databases. In Rakesh Agrawal and Paul Stolorz and Gregory Piatetsky-Shapiro, editors, KDD98, pages 9--15, New York City, 1998. AAAI Press.

[4983] Peter Cheeseman and James Kelly and Matthew Self and John Stutz and Will Taylor and Don Freeman. AutoClass: a Bayesian classification system. Readings in knowledge acquisition and learning: automating the construction and improvement of expert systems, pages 431--441. Morgan Kaufmann Publishers Inc., 1993.

[4984] James Dougherty and Ron Kohavi and Mehran Sahami. Supervised and Unsupervised Discretization of Continuous Features. ICML95, pages 194--202, 1995.

[4985] Duda, Robert O. and Hart, Peter E. and Stork, David G. Pattern Classification. John Wiley & Sons, Inc., New York, Second edition, 2001.

[4986] Tapio Elomaa and Juho Rousu. General and Efficient Multisplitting of Numerical Attributes. Machine Learning, 36(3):201--244, 1999.

[4987] Levent Ertöz and Michael Steinbach and Vipin Kumar. A New Shared Nearest Neighbor Clustering Algorithm and its Applications. Workshop on Clustering High Dimensional Data and its Applications, Proc. of Text Mine'01, First SIAM Intl. Conf. on Data Mining, Chicago, IL, USA, 2001.

[4988] Levent Ertöz and Michael Steinbach and Vipin Kumar. Finding Clusters of Different Sizes, Shapes, and Densities in Noisy, High Dimensional Data. SDM03, San Francisco, 2003. SIAM.

[4989] Martin Ester and Hans-Peter Kriegel and Jörg Sander and Michael Wimmer and Xiaowei Xu. Incremental Clustering for Mining in a Data Warehousing Environment. In Ashish Gupta and Oded Shmueli and Jennifer Widom, editors, VLDB98, pages 323--333, New York City, 1998. Morgan Kaufmann.

[4990] Martin Ester and Hans-Peter Kriegel and Jorg Sander and Xiaowei Xu. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Evangelos Simoudi and Jiawei Han and Usama M. Fayyad, editors, KDD96, pages 226--231, Portland, Oregon, 1996. AAAI Press.

[4991] Brian S. Everitt and Sabine Landau and Morven Leese. Cluster Analysis. Arnold Publishers, London, Fourth edition, 2001.

[4992] U. M. Fayyad and K. B. Irani. Multi-interval discretization of continuousvalued attributes for classification learning. Proc. 13th Int. Joint Conf. on Artificial Intelligence, pages 1022--1027, 1993. Morgan Kaufman.

[4993] Douglas Fisher. Iterative Optimization and Simplification of Hierarchical Clusterings. Journal of Artificial Intelligence Research, 4:147--179, 1996.

[4994] Douglas Fisher and Pat Langley. Conceptual clustering and its relation to numerical taxonomy. Artificial Intelligence and Statistics, :77--116, 1986.

[4995] Chris Fraley and Adrian E. Raftery. How Many Clusters? Which Clustering Method? Answers Via Model-Based Cluster Analysis. The Computer Journal, 41(8):578--588, 1998.

[4996] Venkatesh Ganti and Johannes Gehrke and Raghu Ramakrishnan. CACTUS--Clustering Categorical Data Using Summaries. KDD99, pages 73--83, 1999. ACM Press.

[4997] Allen Gersho and Robert M. Gray. Vector Quantization and Signal Compression, volume 159 of Kluwer International Series in Engineering and Computer Science. Kluwer Academic Publishers, 1992.

[4998] Joydeep Ghosh. Scalable Clustering Methods for Data Mining. In Nong Ye, editors, Handbook of Data Mining, pages 247--277. Lawrence Ealbaum Assoc, 2003.

[4999] David Gibson and Jon M. Kleinberg and Prabhakar Raghavan. Clustering Categorical Data: An Approach Based on Dynamical Systems. VLDB Journal, 8(3--4):222--236, 2000.

[5000] K. C. Gowda and G. Krishna. Agglomerative Clustering Using the Concept of Mutual Nearest Neighborhood. Pattern Recognition, 10(2):105--112, 1978.

[5001] Sudipto Guha and Adam Meyerson and Nina Mishra and Rajeev Motwani and Liadan O'Callaghan. Clustering Data Streams: Theory and Practice. IEEE Transactions on Knowledge and Data Engineering, 15(3):515--528, 2003.

[5002] Sudipto Guha and Rajeev Rastogi and Kyuseok Shim. CURE: An Efficient Clustering Algorithm for Large Databases. In Laura M. Haas and Ashutosh Tiwary, editors, SIGMOD98, pages 73--84, 1998. ACM Press.

[5003] Sudipto Guha and Rajeev Rastogi and Kyuseok Shim. ROCK: A Robust Clustering Algorithm for Categorical Attributes. In Masaru Kitsuregawa and Leszek Maciaszek and Mike Papazoglou and Calton Pu, editors, ICDE99, pages 512--521, 1999. IEEE Computer Society.

[5004] Maria Halkidi and Yannis Batistakis and Michalis Vazirgiannis. Cluster validity methods: part I. SIGMOD Record (ACM Special Interest Group on Management of Data), 31(2):40--45, 2002.

[5005] Maria Halkidi and Yannis Batistakis and Michalis Vazirgiannis. Clustering validity checking methods: part II. SIGMOD Record (ACM Special Interest Group on Management of Data), 31(3):19--27, 2002.

[5006] Greg Hamerly and Charles Elkan. Alternatives to the k-means algorithm that find better clusterings. CIKM02, pages 600--607, McLean, Virginia, 2002. ACM Press.

[5007] Jiawei Han and Micheline Kamber and Anthony Tung. Spatial Clustering Methods in Data Mining: A review. In Harvey J. Miller and Jiawei Han, editors, Geographic Data Mining and Knowledge Discovery, pages 188--217. Taylor and Francis, London, 2001.

[5008] John Hartigan. Clustering Algorithms. Wiley, New York, 1975.

[5009] Alexander Hinneburg and Daniel A. Keim. Optimal Grid-Clustering: Towards Breaking the Curse of Dimensionality in High-Dimensional Clustering. In M. P. Atkinson and M. E. Orlowska and P. Valduriez and S. B. Zdonik and M. L. Brodie, editors, VLDB99, pages 506--517, Edinburgh, Scotland, UK, 1999. Morgan Kaufmann.

[5010] Alexander Hinneburg and Daniel. A. Keim. An Efficient Approach to Clustering in Large Multimedia Databases with Noise. In Rakesh Agrawal and Paul Stolorz, editors, KDD98, pages 58--65, New York City, 1998. AAAI Press.

[5011] F. Hussain and H. Liu and C. L. Tan and M. Dash. TRC6/99: Discretization: an enabling technique. Technical report, National University of Singapore, Singapore, 1999.

[5012] Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data of Prentice Hall Advanced Reference Series. Prentice Hall, 1988. Book available online at http://www.cse.msu.edu/ : jain/Clustering_Jain_Dubes.pdf.

[5013] Anil K. Jain and M. Narasimha Murty and Patrick J. Flynn. Data clustering: A review. ACM Computing Surveys, 31(3):264--323, 1999.

[5014] Nicolas Jardine and Robin Sibson. Mathematical Taxonomy. Wiley, New York, 1971.

[5015] R. A. Jarvis and E. A. Patrick. Clustering Using a Similarity Measure Based on Shared Nearest Neighbors. IEEE Transactions on Computers, C-22(11):1025-1034, 1973.

[5016] I. T. Jolliffe. Principal Component Analysis. Springer Verlag, 2nd edition, 2002.

[5017] Istvan Jonyer and Diane J. Cook and Lawrence B. Holder. Graph-based hierarchical conceptual clustering. Journal of Machine Learning Research, 2:19--43, 2002.

[5018] Karin Kailing and Hans-Peter Kriegel and Peer Kröger. Density-Connected Subspace Clustering for High-Dimensional Data. In Michael W. Berry and Umeshwar Dayal and Chandrika Kamath and David B. Skillicorn, editors, SDM04, pages 428--439, Lake Buena Vista, Florida, 2004. SIAM.

[5019] George Karypis and Eui-Hong Han and Vipin Kumar. CHAMELEON: A Hierarchical Clustering Algorithm Using Dynamic Modeling. IEEE Computer, 32(8):68--75, 1999.

[5020] George Karypis and Eui-Hong Han and Vipin Kumar. Multilevel Refinement for Hierarchical Clustering. Technical report, TR 99-020, University of Minnesota, Minneapolis, MN, 1999.

[5021] George Karypis and Vipin Kumar. Multilevel k-way Partitioning Scheme for Irregular Graphs. Journal of Parallel and Distributed Computing, 48(1):96-129, 1998.

[5022] Leonard Kaufman and Peter J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster Analysis of Wiley Series in Probability and Statistics. John Wiley and Sons, New York, 1990.

[5023] Jon M. Kleinberg. An Impossibility Theorem for Clustering. Proc. of the 16th Annual Conf. on Neural Information Processing Systems, 2002.

[5024] Ron Kohavi and George H. John. Wrappers for Feature Subset Selection. Artificial Intelligence, 97(1--2):273--324, 1997.

[5025] Teuvo Kohonen and Thomas S. Huang and Manfred R. Schroeder. Self-Organizing Maps. Springer-Verlag, 2000.

[5026] Joseph B. Kruskal and Eric M. Uslaner. Multidimensional Scaling. Sage Publications, 1978.

[5027] Bjornar Larsen and Chinatsu Aone. Fast and Effective Text Mining Using Linear-Time Document Clustering. KDD99, pages 16--22, San Diego, California, 1999. ACM Press.

[5028] H. Liu and H. Motoda and L. Yu. Feature Extraction, Selection, and Construction. In Nong Ye, editors, The Handbook of Data Mining, pages 22--41. Lawrence Erlbaum Associates, Inc., Mahwah, NJ, 2003.

[5029] Huan Liu and Hiroshi Motoda. Feature Selection for Knowledge Discovery and Data Mining of Kluwer International Series in Engineering and Computer Science, 454. Kluwer Academic Publishers, 1998.

[5030] J. MacQueen. Some methods for classification and analysis of multivariate observations. In Le Cam, L. M. and Neyman, J., editors, Proc. of the 5th Berkeley Symp. on Mathematical Statistics and Probability, pages 281--297, 1967. University of California Press.

[5031] Michalski, R. S. and Stepp, R. E. Automated Construction of Classifications: Conceptual Clustering Versus Numerical Taxonomy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 5(4):396--409, 1983.

[5032] Glen W. Milligan. Clustering Validation: Results and Implications for Applied Analyses. In P. Arabie and L. Hubert and G. De Soete, editors, Clustering and Classification, pages 345--375. World Scientific, Singapore, 1996.

[5033] Boris Mirkin. Mathematical Classification and Clustering, volume 11 of Nonconvex Optimization and Its Applications. Kluwer Academic Publishers, 1996.

[5034] Nina Mishra and Dana Ron and Ram Swaminathan. A New Conceptual Clustering Framework. Machine Learning Journal, 56(1--3):115--151, 2004.

[5035] Luis Carlos Molina and Lluis Belanche and Angela Nebot. Feature Selection Algorithms: A Survey and Experimental Evaluation. ICDM02, 2002.

[5036] Fionn Murtagh. Clustering massive data sets. In J. Abello and P. M. Pardalos and M. G. C. Reisende, editors, Handbook of Massive Data Sets. Kluwer, 2000.

[5037] Fionn Murtagh. Multidimensional Clustering Algorithms. Physica-Verlag, Heidelberg and Vienna, 1985.

[5038] Harsha Nagesh and Sanjay Goil and Alok Choudhary. Parallel Algorithms for Clustering High-Dimensional Large-Scale Datasets. In Robert L. Grossman and Chandrika Kamath and Philip Kegelmeyer and Vipin Kumar and Raju Namburu, editors, Data Mining for Scientific and Engineering Applications, pages 335--356. Kluwer Academic Publishers, Dordrecht, Netherlands, 2001.

[5039] Raymond T. Ng and Jiawei Han. CLARANS: A Method for Clustering Objects for Spatial Data Mining. IEEE Transactions on Knowledge and Data Engineering, 14(5):1003--1016, 2002.

[5040] Dan Pelleg and Andrew W. Moore. X -means: Extending K -means with Efficient Estimation of the Number of Clusters. ICML00, pages 727--734, 2000. Morgan Kaufmann, San Francisco, CA.

[5041] Markus Peters and Mohammed J. Zaki. CLICKS: Clustering Categorical Data using K-partite Maximal Cliques. ICDE05, Tokyo, Japan, 2005.

[5042] Thomas C. Redman. Data Quality: The Field Guide. Digital Press, 2001.

[5043] Charles Romesburg. Cluster Analysis for Researchers. Life Time Learning, Belmont, CA, 1984.

[5044] J. Sander and M. Ester and H.-P. Kriegel and X. Xu. Density-Based Clustering in Spatial Databases: The Algorithm GDBSCAN and its Applications. Data Mining and Knowledge Discovery, 2(2):169--194, 1998.

[5045] Sergio M. Savaresi and Daniel Boley. A comparative analysis on the bisecting K-means and the PDDP clustering algorithms. Intelligent Data Analysis, 8(4):345-362, 2004.

[5046] Erich Schikuta and Martin Erhart. The BANG-Clustering System: Grid-Based Data Analysis. In Xiaohui Liu and Paul R. Cohen and Michael R. Berthold, editors, Advances in Intelligent Data Analysis, Reasoning about Data, Second Intl. Symposium, IDA-97, London in Lecture Notes in Computer Science, pages 513--524, 1997. Springer.

[5047] Gholamhosein Sheikholeslami and Surojit Chatterjee and Aidong Zhang. Wavecluster: A multi-resolution clustering approach for very large spatial databases. In Ashish Gupta and Oded Shmueli and Jennifer Widom, editors, VLDB98, pages 428--439, New York City, 1998. Morgan Kaufmann.

[5048] Sneath, Peter H. A. and Robert R. Sokal. Numerical Taxonomy. Freeman, San Francisco, 1971.

[5049] Helmuth Späth. Cluster Analysis Algorithms for Data Reduction and Classification of Objects, volume 4 of Computers and Their Application. Ellis Horwood Publishers, Chichester, 1980. ISBN 0-85312-141-9.

[5050] Ramakrishnan Srikant and Rakesh Agrawal. Mining Quantitative Association Rules in Large Relational Tables. In H. V. Jagadish and Inderpal Singh Mumick, editors, SIGMOD96, pages 1--12, Montreal, Quebec, Canada, 1996.

[5051] Michael Steinbach and George Karypis and Vipin Kumar. A Comparison of Document Clustering Techniques. Proc. of KDD Workshop on Text Mining, Proc. of the 6th Intl. Conf. on Knowledge Discovery and Data Mining, Boston, MA, 2000.

[5052] Robert E. Stepp and Ryszard S. Michalski. Conceptual clustering of structured objects: A goal-oriented approach. Artificial Intelligence, 28(1):43--69, 1986.

[5053] Alexander Strehl and Joydeep Ghosh. A Scalable Approach to Balanced, High-dimensional Clustering of Market-Baskets. Proc. of the 7th Intl. Conf. on High Performance Computing (HiPC 2000) in Lecture Notes in Computer Science, pages 525--536, Bangalore, India, 2000. Springer.

[5054] Charles T. Zahn. Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters. IEEE Transactions on Computers, C-20(1):68-86, 1971.

[5055] Tian Zhang and Raghu Ramakrishnan and Miron Livny. BIRCH: an efficient data clustering method for very large databases. In H. V. Jagadish and Inderpal Singh Mumick, editors, SIGMOD96, pages 103--114, Montreal, Quebec, Canada, 1996. ACM Press.

[5056] CLUTO 2.1.1: Software for Clustering High-Dimensional Datasets. /www.cs.umn.edu/ : karypis, 2003.

[4629] Agrawal, R. and Imielinski, T. and Swami, A. Database mining: A performance perspective. IEEE Transactions on Knowledge and Data Engineering, 5:914--925, 1993.

[5057] P. S. Bradley and U. M. Fayyad and C. Reina. Scaling EM (Expectation Maximization) Clustering to Large Databases. Technical report, MSR-TR-98-35, Microsoft Research, 1999.

[5058] D. A. Burn. Designing Effective Statistical Graphs. In C. R. Rao, editors, Handbook of Statistics 9. Elsevier/North-Holland, Amsterdam, The Netherlands, 1993.

[5059] Inderjit S. Dhillon and Yuqiang Guan and J. Kogan. Iterative Clustering of High Dimensional Text Data Augmented by Local Search. ICDM02, pages 131-138, 2002. IEEE Computer Society.

[5060] Inderjit S. Dhillon and Dharmendra S. Modha. Concept Decompositions for Large Sparse Text Data Using Clustering. Machine Learning, 42(1/2):143-175, 2001.

[5061] Michael Friendly. Gallery of Data Visualization. http://www.math.yorku.ca/SCS/Gallery/, 2005.

[5062] Eui-Hong Han and George Karypis and Vipin Kumar and Bamshad Mobasher. Hypergraph Based Clustering in High-Dimensional Data Sets: A Summary of Results. IEEE Data Eng. Bulletin, 21(1):15-22, 1998.

[5063] Konstantinos Kalpakis and Dhiral Gada and Vasundhara Puttagunta. Distance Measures for Effective Clustering of ARIMA Time-Series. ICDM01, pages 273-280, 2001. IEEE Computer Society.

[5064] Eamonn J. Keogh and Michael J. Pazzani. Scaling up dynamic time warping for datamining applications. Proc. of the 10th Intl. Conf. on Knowledge Discovery and Data Mining, pages 285-289, 2000.

[5065] Robert Spence. Information Visualization. ACM Press, New York, 2000.

[5066] Michael Steinbach and Pang-Ning Tan and Vipin Kumar and Steven Klooster and Christopher Potter. Discovery of climate indices using clustering. KDD '03: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 446--455, New York, NY, USA, 2003. ACM Press.

[5067] Edward R. Tufte. The Visual Display of Quantitative Information. Graphics Press, Cheshire, CT, 1986.

[5068] John W. Tukey. Exploratory data analysis. Addison-Wesley, 1977.

[5069] Velleman, Paul and Hoaglin, David. The ABC's of EDA: Applications, Basics, and Computing of Exploratory Data Analysis. Duxbury, 1981.

[5070] Bin Zhang and Meichun Hsu and Umeshwar Dayal. K-Harmonic Means---A Data Clustering Algorithm. Technical report, HPL-1999-124, Hewlett Packard Laboratories, 1999.

[5071] Ying Zhao and George Karypis. Empirical and theoretical comparisons of selected criterion functions for document clustering. Machine Learning, 55(3):311--331, 2004.

[5072] Information Visualization in Data Mining and Knowledge Discovery. Morgan Kaufmann Publishers, San Francisco, CA, 2001.

[5073] Mathematica 5.1. Wolfram Research, Inc.. http://www.wolfram.com/, 2005.

[5074] MATLAB 7.0. The MathWorks, Inc.. http://www.mathworks.com, 2005.

[5075] Microsoft Excel 2003. Microsoft, Inc.. http://www.microsoft.com/, 2003.

[4651] Agarwal, R. C. and Shafer, J. C. Parallel Mining of Association Rules. IEEE Transactions on Knowledge and Data Engineering, 8(6):962--969, 1998.

[4652] Aggarwal, C. C. and Sun, Z. and Yu, P. S. Online Generation of Profile Association Rules. KDD98, pages 129--133, New York, NY, 1996.

[4653] Aggarwal, C. C. and Yu, P. S. Mining Associations with the Collective Strength Approach. IEEE Trans. on Knowledge and Data Engineering, 13(6):863--873, 2001.

[4654] Aggarwal, C. C. and Yu, P. S. Mining Large Itemsets for Association Rules. Data Engineering Bulletin, 21(1):23--31, 1998.

[4655] Agrawal, R. and Imielinski, T. and Swami, A. Mining association rules between sets of items in large databases. Proc. ACM SIGMOD Intl. Conf. Management of Data, pages 207--216, Washington, DC, 1993.

[4656] Agrawal, R. and Srikant, R. Mining Sequential Patterns. Proc. of Intl. Conf. on Data Engineering, pages 3--14, Taipei, Taiwan, 1995.

[4657] Aha, D. W. A study of instance-based algorithms for supervised learning tasks: mathematical, empirical, and psychological evaluations. PhD thesis, University of California, Irvine, 1990.

[4658] Ali, K. and Manganaris, S. and Srikant, R. Partial Classification using Association Rules. KDD97, pages 115--118, Newport Beach, CA, 1997.

[4659] Alsabti, K. and Ranka, S. and Singh, V. CLOUDS: A Decision Tree Classifier for Large Datasets. KDD98, pages 2--8, New York, NY, 1998.

[4660] Aumann, Y. and Lindell, Y. A Statistical Theory for Quantitative Association Rules. KDD99, pages 261--270, San Diego, CA, 1999.

[5076] E. F. Codd and S. B. Codd and C. T. Smalley. Providing OLAP (On-line Analytical Processing) to User- Analysts: An IT Mandate. White Paper, E.F. Codd and Associates, 1993.

[5077] Jim Gray and Surajit Chaudhuri and Adam Bosworth and Andrew Layman and Don Reichart and Murali Venkatrao and Frank Pellow and Hamid Pirahesh. Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals. Journal Data Mining and Knowledge Discovery, 1(1):29--53, 1997.

[5078] Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems. McGraw-Hill, 3rd edition, 2002.

[5079] Arie Shoshani. OLAP and statistical databases: similarities and differences. Proc. of the Sixteenth ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems, pages 185--196, 1997. ACM Press.

[5080] Zhong, N. and Yao, Y. Y. and Ohsuga, S. Peculiarity Oriented Multi-database Mining. PKDD99, pages 136--146, Prague, Czech Republic, 1999.

[5081] R: A language and environment for statistical computing and graphics. The R Project for Statistical Computing. http://www.r-project.org/, 2005.

[4679] Allwein, E. L. and Schapire, R. E. and Singer, Y. Reducing Multiclass to Binary: A Unifying Approach to Margin Classifiers. Journal of Machine Learning Research, 1:113--141, 2000.

[4680] Antonie, M-L. and Zaďane, O. R. Mining Positive and Negative Association Rules: An Approach for Confined Rules. PKDD04, pages 27--38, Pisa, Italy, 2004.

[5082] S-PLUS. Insightful Corporation. http://www.insightful.com, 2005.

[5083] SAS: Statistical Analysis System. SAS Institute Inc.. http://www.sas.com/, 2005.

[4683] Ayres, J. and Flannick, J. and Gehrke, J. and Yiu, T. Sequential Pattern mining using a bitmap representation. KDD02, pages 429-435, Edmonton, Canada, 2002.

[4684] Barbará, D. and Couto, J. and Jajodia, S. and Wu, N. ADAM: A Testbed for Exploring the Use of Data Mining in Intrusion Detection. SIGMOD Record, 30(4):15--24, 2001.

[4685] Bay, S. D. and Pazzani, M. Detecting Group Differences: Mining Contrast Sets. Data Mining and Knowledge Discovery, 5(3):213--246, 2001.

[4686] Bayardo, R. Efficiently Mining Long Patterns from Databases. SIGMOD98, pages 85--93, Seattle, WA, 1998.

[4687] Bayardo, R. and Agrawal, R. Mining the Most Interesting Rules. KDD99, pages 145--153, San Diego, CA, 1999.

[4688] Benjamini, Y. and Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal Royal Statistical Society B, 57(1):289--300, 1995.

[4689] Breslow, L. A. and Aha, D. W. Simplifying Decision Trees: A Survey. Knowledge Engineering Review, 12(1):1--40, 1997.

[5084] SPSS: Statistical Package for the Social Sciences. SPSS, Inc.. http://www.spss.com/, 2005.

[4691] Bennett, K. and Campbell, C. Support Vector Machines: Hype or Hallelujah. SIGKDD Explorations, 2(2):1--13, 2000.

[4692] Berry, M. J. A. and Linoff, G. Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management. Wiley Computer Publishing, 2nd edition, 2004.

[4693] Bishop, C. M. Neural Networks for Pattern Recognition. Oxford University Press, Oxford, U.K., 1995.

[4694] Bolton, R. J. and Hand, D. J. and Adams, N. M. Determining Hit Rate in Pattern Search. Proc. of the ESF Exploratory Workshop on Pattern Detection and Discovery in Data Mining, pages 36--48, London, UK, 2002.

[4695] Boulicaut, J-F. and Bykowski, A. and Jeudy, B. Towards the Tractable Discovery of Association Rules with Negations. Proc. of the 4th Intl. Conf on Flexible Query Answering Systems FQAS'00, pages 425--434, Warsaw, Poland, 2000.

[4696] Bradley, A. P. The use of the area under the ROC curve in the Evaluation of Machine Learning Algorithms. Pattern Recognition, 30(7):1145--1149, 1997.

[4697] Paul S. Bradley and Johannes Gehrke and Raghu Ramakrishnan and Ramakrishnan Srikant. Scaling mining algorithms to large databases. Communications of the ACM, 45(8):38-43, 2002.

[4698] Breiman, L. Bagging Predictors. Machine Learning, 24(2):123--140, 1996.

[4699] Breiman, L. Bias, Variance, and Arcing Classifiers. Technical report, 486, University of California, Berkeley, CA, 1996.

[4700] Breiman, L. Random Forests. Machine Learning, 45(1):5--32, 2001.

[4701] Breiman, L. and Friedman, J. H. and Olshen, R. and Stone, C. J. Classification and Regression Trees. Chapman & Hall, New York, 1984.

[4702] Brin, S. and Motwani, R. and Silverstein, C. Beyond market baskets: Generalizing association rules to correlations. Proc. ACM SIGMOD Intl. Conf. Management of Data, pages 265--276, Tucson, AZ, 1997.

[4703] Brin, S. and Motwani, R. and Ullman, J. and Tsur, S. Dynamic Itemset Counting and Implication Rules for market basket data. SIGMOD97, pages 255--264, Tucson, AZ, 1997.

[4704] Buntine, W. Learning classification trees. In Hand, D. J., editors, Artificial Intelligence Frontiers in Statistics, pages 182--201, 1993. Chapman & Hall, London.

[4705] Burges, C. J. C. A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 2(2):121--167, 1998.

[4706] Cai, C. H. and Fu, A. and Cheng, C. H. and Kwong, W. W. Mining Association Rules with Weighted Items. Proc. of IEEE Intl. Database Engineering and Applications Symp., pages 68--77, Cardiff, Wales, 1998.

[4707] Cant u' -Paz, E. and Kamath, C. Using evolutionary algorithms to induce oblique decision trees. Proc. of the Genetic and Evolutionary Computation Conf., pages 1053--1060, San Francisco, CA, 2000.

[4708] Chakrabarti, S. Mining the Web: Discovering Knowledge from Hypertext Data. Morgan Kaufmann, San Francisco, CA, 2003.

[4709] Chawla, N. V. and Bowyer, K. W. and Hall, L. O. and Kegelmeyer, W. P. SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16:321--357, 2002.

[4710] Chawla, N. V. and Japkowicz, N. and Kolcz, A. Editorial: Special Issue on Learning from Imbalanced Data Sets. SIGKDD Explorations, 6(1):1--6, 2004.

[4711] Chen, Q. and Dayal, U. and Hsu, M. A Distributed OLAP infrastructure for E-Commerce. Proc. of the 4th IFCIS Intl. Conf. on Cooperative Information Systems, pages 209--220, Edinburgh, Scotland, 1999.

[4712] Cheng, H. and Yan, X. and Han, J. IncSpan: incremental mining of sequential patterns in large database. KDD04, pages 527-532, Seattle, WA, 2004.

[4713] Cherkassky, V. and Mulier, F. Learning from Data: Concepts, Theory, and Methods. Wiley Interscience, 1998.

[4714] Cheung, D. C. and Lee, S. D. and Kao, B. A General Incremental Technique for Maintaining Discovered Association Rules. Proc. of the 5th Intl. Conf. on Database Systems for Advanced Applications, pages 185--194, Melbourne, Australia, 1997.

[4715] Clark, P. and Boswell, R. Rule Induction with CN2: Some Recent Improvements. Machine Learning: Proc. of the 5th European Conf. (EWSL-91), pages 151--163, 1991.

[4716] Clark, P. and Niblett, T. The CN2 Induction Algorithm. Machine Learning, 3(4):261--283, 1989.

[4717] Cohen, W. W. Fast Effective Rule Induction. ICML95, pages 115--123, Tahoe City, CA, 1995.

[4718] Cooley, R. and Tan, P. N. and Srivastava, J. Discovery of Interesting Usage Patterns from Web Data. In Spiliopoulou, M. and Masand, B., editors, Advances in Web Usage Analysis and User Profiling, pages 163--182. Lecture Notes in Computer Science, 2000.

[4719] Cost, S. and Salzberg, S. A Weighted Nearest Neighbor Algorithm for Learning with Symbolic Features. Machine Learning, 10:57--78, 1993.

[4720] Cover, T. M. and Hart, P. E. Nearest Neighbor Pattern Classification. Knowledge Based Systems, 8(6):373--389, 1995.

[4721] Cristianini, N. and Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, 2000.

[4722] Dietterich, T. G. Ensemble Methods in Machine Learning. First Intl. Workshop on Multiple Classifier Systems, Cagliari, Italy, 2000.

[4723] Dietterich, T. G. and Bakiri, G. Solving Multiclass Learning Problems via Error-Correcting Output Codes. Journal of Artificial Intelligence Research, 2:263--286, 1995.

[4724] Dokas, P. and Ertöz, L. and Kumar, V. and Lazarevic, A. and Srivastava, J. and Tan, P. N. Data Mining for Network Intrusion Detection. Proc. NSF Workshop on Next Generation Data Mining, Baltimore, MD, 2002.

[4725] Domingos, P. MetaCost: A General Method for Making Classifiers Cost-Sensitive. KDD99, pages 155--164, San Diego, CA, 1999.

[4726] Domingos, P. The RISE system: Conquering without separating. Proc. of the 6th IEEE Intl. Conf. on Tools with Artificial Intelligence, pages 704--707, New Orleans, LA, 1994.

[4727] Domingos, P. The Role of Occam's Razor in Knowledge Discovery. Data Mining and Knowledge Discovery, 3(4):409--425, 1999.

[4728] Domingos, P. and Pazzani, M. On the Optimality of the Simple Bayesian Classifier under Zero-One Loss. Machine Learning, 29(2-3):103--130, 1997.

[4729] Dong, G. and Li, J. Efficient Mining of Emerging Patterns: Discovering Trends and Differences. KDD99, pages 43--52, San Diego, CA, 1999.

[4730] Dong, G. and Li, J. Interestingness of discovered association rules in terms of neighborhood-based unexpectedness. PAKDD98, pages 72--86, Melbourne, Australia, 1998.

[4731] Drummond, C. and Holte, R. C. C4.5, Class imbalance, and Cost sensitivity: Why under-sampling beats over-sampling. ICML'2004 Workshop on Learning from Imbalanced Data Sets II, Washington, DC, 2003.

[4732] Duda, R. O. and Hart, P. E. and Stork, D. G. Pattern Classification. John Wiley & Sons, Inc., New York, 2nd edition, 2001.

[4733] DuMouchel, W. and Pregibon, D. Empirical Bayes Screening for Multi-Item Associations. KDD01, pages 67--76, San Francisco, CA, 2001.

[4734] Dunham, M. H. Data Mining: Introductory and Advanced Topics. Prentice Hall, 2002.

[4735] Dunkel, B. and Soparkar, N. Data Organization and Access for Efficient Data Mining. ICDE99, pages 522--529, Sydney, Australia, 1999.

[4736] Efron, B. and Tibshirani, R. Cross-validation and the Bootstrap: Estimating the Error Rate of a Prediction Rule. Technical report, Stanford University, 1995.

[4737] Elkan, C. The Foundations of Cost-Sensitive Learning. Proc. of the 17th Intl. Joint Conf. on Artificial Intelligence, pages 973--978, Seattle, WA, 2001.

[4738] Esposito, F. and Malerba, D. and Semeraro, G. A Comparative Analysis of Methods for Pruning Decision Trees. IEEE Trans. Pattern Analysis and Machine Intelligence, 19(5):476--491, 1997.

[4739] F u ¨ rnkranz, J. and Widmer, G. Incremental reduced error pruning. ICML94, pages 70--77, New Brunswick, NJ, 1994.

[4740] Fabris, C. C. and Freitas, A. A. Discovering surprising patterns by detecting occurrences of Simpson's paradox. Proc. of the 19th SGES Intl. Conf. on Knowledge-Based Systems and Applied Artificial Intelligence), pages 148--160, Cambridge, UK, 1999.

[4741] Fan, W. and Stolfo, S. J. and Zhang, J. and Chan, P. K. AdaCost: misclassification cost-sensitive boosting. ICML99, pages 97--105, Bled, Slovenia, 1999.

[4742] Usama M. Fayyad and Gregory Piatetsky-Shapiro and Padhraic Smyth. From Data Mining to Knowledge Discovery: An Overview. Advances in Knowledge Discovery and Data Mining, pages 1-34. AAAI Press, 1996.

[4743] Feng, L. and Lu, H. J. and Yu, J. X. and Han, J. Mining inter-transaction associations with templates. CIKM99, pages 225--233, Kansas City, Missouri, 1999.

[4744] Ferri, C. and Flach, P. and Hernandez-Orallo, J. Learning Decision Trees Using the Area Under the ROC Curve. ICML02, pages 139--146, Sydney, Australia, 2002.

[4745] Fisher, R. A. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7:179--188, 1936.

[4746] Freitas, A. A. Understanding the crucial differences between classification and discovery of association rules---a position paper. SIGKDD Explorations, 2(1):65--69, 2000.

[4747] Freund, Y. and Schapire, R. E. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119--139, 1997.

[4748] Friedman, J. H. Data Mining and Statistics: What's the Connection?. Unpublished. www-stat.stanford.edu/ : jhf/ftp/dm-stat.ps, 1997.

[4749] Friedman, J. H. and Fisher, N. I. Bump hunting in high-dimensional data. Statistics and Computing, 9(2):123--143, 1999.

[4750] Fukuda, T. and Morimoto, Y. and Morishita, S. and Tokuyama, T. Mining Optimized Association Rules for Numeric Attributes. PODS96, pages 182--191, Montreal, Canada, 1996.

[4751] Fukunaga, K. Introduction to Statistical Pattern Recognition. Academic Press, New York, 1990.

[4752] Garofalakis, M. N. and Rastogi, R. and Shim, K. SPIRIT: Sequential Pattern Mining with Regular Expression Constraints. VLDB99, pages 223--234, Edinburgh, Scotland, 1999.

[4753] Gehrke, J. and Ramakrishnan, R. and Ganti, V. RainForest---A Framework for Fast Decision Tree Construction of Large Datasets. Data Mining and Knowledge Discovery, 4(2/3):127--162, 2000.

[4754] Clark Glymour and David Madigan and Daryl Pregibon and Padhraic Smyth. Statistical Themes and Lessons for Data Mining. Data Mining and Knowledge Discovery, 1(1):11--28, 1997.

[4755] Robert L. Grossman and Mark F. Hornick and Gregor Meyer. Data mining standards initiatives. Communications of the ACM, 45(8):59-61, 2002.

[4756] Gunopulos, D. and Khardon, R. and Mannila, H. and Toivonen, H. Data Mining, Hypergraph Transversals, and Machine Learning. PODS97, pages 209--216, Tucson, AZ, 1997.

[4757] Han, E.-H. and Karypis, G. and Kumar, V. Min-Apriori: An Algorithm for Finding Association Rules in Data with Continuous Attributes. http://www.cs.umn.edu/han, 1997.

[4758] Han, E.-H. and Karypis, G. and Kumar, V. Scalable Parallel Data Mining for Association Rules. SIGMOD97, pages 277--288, Tucson, AZ, 1997.

[4759] Han, E.-H. and Karypis, G. and Kumar, V. Text Categorization Using Weight Adjusted k-Nearest Neighbor Classification. PAKDD01, Lyon, France, 2001.

[4760] Han, E.-H. and Karypis, G. and Kumar, V. and Mobasher, B. Clustering Based on Association Rule Hypergraphs. DMKD97, Tucson, AZ, 1997.

[4761] Han, J. and Fu, Y. Mining Multiple-Level Association Rules in Large Databases. IEEE Trans. on Knowledge and Data Engineering, 11(5):798--804, 1999.

[4762] Han, J. and Fu, Y. and Koperski, K. and Wang, W. and Zaďane, O. R. DMQL: A data mining query language for relational databases. DMKD96, Montreal, Canada, 1996.

[4763] Han, J. and Kamber, M. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, San Francisco, 2001.

[4764] Han, J. and Pei, J. and Yin, Y. Mining Frequent Patterns without Candidate Generation. Proc. ACM-SIGMOD Int. Conf. on Management of Data (SIGMOD'00), pages 1--12, Dallas, TX, 2000.

[4765] Jiawei Han and Russ B. Altman and Vipin Kumar and Heikki Mannila and Daryl Pregibon. Emerging scientific applications in data mining. Communications of the ACM, 45(8):54-58, 2002.

[4766] Hand, D. J. Data Mining: Statistics and More?. The American Statistician, 52(2):112--118, 1998.

[4767] Hand, D. J. and Mannila, H. and Smyth, P. Principles of Data Mining. MIT Press, 2001.

[4768] Hastie, T. and Tibshirani, R. Classification by pairwise coupling. Annals of Statistics, 26(2):451--471, 1998.

[4769] Hastie, T. and Tibshirani, R. and Friedman, J. H. The Elements of Statistical Learning: Data Mining, Inference, Prediction. Springer, New York, 2001.

[4770] Hearst, M. Trends & Controversies: Support Vector Machines. IEEE Intelligent Systems, 13(4):18--28, 1998.

[4771] Heath, D. and Kasif, S. and Salzberg, S. Induction of Oblique Decision Trees. Proc. of the 13th Intl. Joint Conf. on Artificial Intelligence, pages 1002--1007, Chambery, France, 1993.

[4772] Heckerman, D. Bayesian Networks for Data Mining. Data Mining and Knowledge Discovery, 1(1):79--119, 1997.

[4773] Hidber, C. Online Association Rule Mining. SIGMOD99, pages 145--156, Philadelphia, PA, 1999.

[4774] Hilderman, R. J. and Hamilton, H. J. Knowledge Discovery and Measures of Interest. Kluwer Academic Publishers, 2001.

[4775] Hipp, J. and Guntzer, U. and Nakhaeizadeh, G. Algorithms for Association Rule Mining---A General Survey. SigKDD Explorations, 2(1):58--64, 2000.

[4776] Hofmann, H. and Siebes, A. P. J. M. and Wilhelm, A. F. X. Visualizing Association Rules with Interactive Mosaic Plots. KDD00, pages 227--235, Boston, MA, 2000.

[4777] Holt, J. D. and Chung, S. M. Efficient Mining of Association Rules in Text Databases. CIKM99, pages 234--242, Kansas City, Missouri, 1999.

[4778] Holte, R. C. Very Simple Classification Rules Perform Well on Most Commonly Used Data sets. Machine Learning, 11:63--91, 1993.

[4779] Houtsma, M. and Swami, A. Set-oriented Mining for Association Rules in Relational Databases. ICDE95, pages 25--33, Taipei, Taiwan, 1995.

[4780] Huang, Y. and Shekhar, S. and Xiong, H. Discovering Co-location Patterns from Spatial Datasets: A General Approach. IEEE Trans. on Knowledge and Data Engineering, 16(12):1472--1485, 2004.

[4781] Imielinski, T. and Virmani, A. and Abdulghani, A. DataMine: Application Programming Interface and Query Language for Database Mining. KDD96, pages 256--262, Portland, Oregon, 1996.

[4782] Inokuchi, A. and Washio, T. and Motoda, H. An Apriori-based Algorithm for Mining Frequent Substructures from Graph Data. PKDD00, pages 13--23, Lyon, France, 2000.

[4783] Jain, A. K. and Duin, R. P. W. and Mao, J. Statistical Pattern Recognition: A Review. IEEE Tran. Patt. Anal. and Mach. Intellig., 22(1):4--37, 2000.

[4784] Japkowicz, N. The Class Imbalance Problem: Significance and Strategies. Proc. of the 2000 Intl. Conf. on Artificial Intelligence: Special Track on Inductive Learning, pages 111--117, Las Vegas, NV, 2000.

[4785] Jaroszewicz, S. and Simovici, D. Interestingness of Frequent Itemsets Using Bayesian Networks as Background Knowledge. KDD04, pages 178--186, Seattle, WA, 2004.

[4786] Jensen, D. and Cohen, P. R. Multiple Comparisons in Induction Algorithms. Machine Learning, 38(3):309--338, 2000.

[4787] Joshi, M. V. On Evaluating Performance of Classifiers for Rare Classes. ICDM02, Maebashi City, Japan, 2002.

[4788] Joshi, M. V. and Agarwal, R. C. and Kumar, V. Mining Needles in a Haystack: Classifying Rare Classes via Two-Phase Rule Induction. SIGMOD01, pages 91-102, Santa Barbara, CA, 2001.

[4789] Joshi, M. V. and Agarwal, R. C. and Kumar, V. Predicting rare classes: can boosting make any weak learner strong?. KDD02, pages 297-306, Edmonton, Canada, 2002.

[4790] Joshi, M. V. and Karypis, G. and Kumar, V. A Universal Formulation of Sequential Patterns. Proc. of the KDD'2001 workshop on Temporal Data Mining, San Francisco, CA, 2001.

[4791] Joshi, M. V. and Karypis, G. and Kumar, V. ScalParC: A New Scalable and Efficient Parallel Classification Algorithm for Mining Large Datasets. Proc. of 12th Intl. Parallel Processing Symp. (IPPS/SPDP), pages 573-579, Orlando, FL, 1998.

[4792] Joshi, M. V. and Kumar, V. CREDOS: Classification Using Ripple Down Structure (A Case for Rare Classes). SDM04, pages 321-332, Orlando, FL, 2004.

[4793] Kamber, M. and Shinghal, R. Evaluating the Interestingness of Characteristic Rules. KDD96, pages 263--266, Portland, Oregon, 1996.

[4794] Kantardzic, M. Data Mining: Concepts, Models, Methods, and Algorithms. Wiley-IEEE Press, Piscataway, NJ, 2003.

[4795] Kass, G. V. An Exploratory Technique for Investigating Large Quantities of Categorical Data. Applied Statistics, 29:119--127, 1980.

[4796] Kim, B. and Landgrebe, D. Hierarchical decision classifiers in high-dimensional and large class data. IEEE Trans. on Geoscience and Remote Sensing, 29(4):518--528, 1991.

[4797] Klemettinen, M. A Knowledge Discovery Methodology for Telecommunication Network Alarm Databases. PhD thesis, University of Helsinki, 1999.

[4798] Kohavi, R. A Study on Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. Proc. of the 15th Intl. Joint Conf. on Artificial Intelligence, pages 1137--1145, Montreal, Canada, 1995.

[4799] Kong, E. B. and Dietterich, T. G. Error-Correcting Output Coding Corrects Bias and Variance. ICML95, pages 313--321, Tahoe City, CA, 1995.

[4800] Kosters, W. A. and Marchiori, E. and Oerlemans, A. Mining Clusters with Association Rules. The 3rd Symp. on Intelligent Data Analysis (IDA99), pages 39--50, Amsterdam, 1999.

[4801] Kubat, M. and Matwin, S. Addressing the Curse of Imbalanced Training Sets: One Sided Selection. ICML97, pages 179--186, Nashville, TN, 1997.

[4802] Kulkarni, S. R. and Lugosi, G. and Venkatesh, S. S. Learning Pattern Classification---A Survey. IEEE Tran. Inf. Theory, 44(6):2178--2206, 1998.

[4803] Kumar, V. and Joshi, M. V. and Han, E.-H. and Tan, P. N. and Steinbach, M. High Performance Data Mining. High Performance Computing for Computational Science (VECPAR 2002), pages 111-125. Springer, 2002.

[4804] Kuok, C. M. and Fu, A. and Wong, M. H. Mining Fuzzy Association Rules in Databases. ACM SIGMOD Record, 27(1):41--46, 1998.

[4805] Kuramochi, M. and Karypis, G. Discovering Frequent Geometric Subgraphs. ICDM02, pages 258--265, Maebashi City, Japan, 2002.

[4806] Kuramochi, M. and Karypis, G. Frequent Subgraph Discovery. ICDM01, pages 313--320, San Jose, CA, 2001.

[4807] Diane Lambert. What Use is Statistics for Massive Data?. ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, pages 54-62, 2000.

[4808] Landeweerd, G. and Timmers, T. and Gersema, E. and Bins, M. and Halic, M. Binary tree versus single level tree classification of white blood cells. Pattern Recognition, 16:571--577, 1983.

[4809] Langley, P. and Iba, W. and Thompson, K. An analysis of Bayesian classifiers. Proc. of the 10th National Conf. on Artificial Intelligence, pages 223--228, 1992.

[4810] Lee, W. and Stolfo, S. J. and Mok, K. W. Adaptive Intrusion Detection: A Data Mining Approach. Artificial Intelligence Review, 14(6):533--567, 2000.

[4811] Lent, B. and Swami, A. and Widom, J. Clustering Association Rules. ICDE97, pages 220--231, Birmingham, U.K, 1997.

[4812] Lewis, D. D. Naive Bayes at Forty: The Independence Assumption in Information Retrieval. Proc. of the 10th European Conf. on Machine Learning (ECML 1998), pages 4--15, 1998.

[4813] Li, W. and Han, J. and Pei, J. CMAR: Accurate and Efficient Classification Based on Multiple Class-association Rules. ICDM01, pages 369--376, San Jose, CA, 2001.

[4814] Liu, B. and Hsu, W. and Chen, S. Using General Impressions to Analyze Discovered Classification Rules. KDD97, pages 31--36, Newport Beach, CA, 1997.

[4815] Liu, B. and Hsu, W. and Ma, Y. Integrating Classification and Association Rule Mining. KDD98, pages 80--86, New York, NY, 1998.

[4816] Liu, B. and Hsu, W. and Ma, Y. Mining association rules with multiple minimum supports. KDD99, pages 125--134, San Diego, CA, 1999.

[4817] Liu, B. and Hsu, W. and Ma, Y. Pruning and Summarizing the Discovered Associations. KDD99, pages 125--134, San Diego, CA, 1999.

[4818] Mangasarian, O. Data Mining via Support Vector Machines. Technical report, Technical Report 01-05, Data Mining Institute, 2001.

[4819] Mannila, H. and Toivonen, H. and Verkamo, A. I. Discovery of Frequent Episodes in Event Sequences. Data Mining and Knowledge Discovery, 1(3):259--289, 1997.

[4820] Marcus, A. and Maletic, J. I. and Lin, K.-I. Ordinal association rules for error identification in data sets. CIKM01, pages 589--591, Atlanta, GA, 2001.

[4821] Margineantu, D. D. and Dietterich, T. G. Learning Decision Trees for Loss Minimization in Multi-Class Problems.Technical report, 99-30-03, Oregon State University, 1999.

[4822] Megiddo, N. and Srikant, R. Discovering Predictive Association Rules. KDD98, pages 274--278, New York, 1998.

[4823] Mehta, M. and Agrawal, R. and Rissanen, J. SLIQ: A Fast Scalable Classifier for Data Mining. Proc. of the 5th Intl. Conf. on Extending Database Technology, pages 18--32, Avignon, France, 1996.

[4824] Meo, R. and Psaila, G. and Ceri, S. A New SQL-like Operator for Mining Association Rules. VLDB96, pages 122--133, Bombay, India, 1996.

[4825] Michalski, R. S. A theory and methodology of inductive learning. Artificial Intelligence, 20:111--116, 1983.

[4826] Michalski, R. S. and Mozetic, I. and Hong, J. and Lavrac, N. The Multi-Purpose Incremental Learning System AQ15 and Its Testing Application to Three Medical Domains. Proc. of 5th National Conf. on Artificial Intelligence, Orlando, 1986.

[4827] Michie, D. and Spiegelhalter, D. J. and Taylor, C. C. Machine Learning, Neural and Statistical Classification. Ellis Horwood, Upper Saddle River, NJ, 1994.

[4828] Miller, R. J. and Yang, Y. Association Rules over Interval Data. SIGMOD97, pages 452--461, Tucson, AZ, 1997.

[4829] Mingers, J. An empirical comparison of pruning methods for decision tree induction. Machine Learning, 4:227--243, 1989.

[4830] Mingers, J. Expert Systems---Rule Induction with Statistical Data. J Operational Research Society, 38:39--47, 1987.

[4831] Mitchell, T. Machine Learning. McGraw-Hill, Boston, MA, 1997.

[4832] Moret, B. M. E. Decision Trees and Diagrams. Computing Surveys, 14(4):593--623, 1982.

[4833] Morimoto, Y. and Fukuda, T. and Matsuzawa, H. and Tokuyama, T. and Yoda, K. Algorithms for mining association rules for binary segmentations of huge categorical databases. VLDB98, pages 380--391, New York, 1998.

[4834] Mosteller, F. Association and Estimation in Contingency Tables. Journal of the American Statistical Association, 63:1--28, 1968.

[4835] Mueller, A. Fast sequential and parallel algorithms for association rule mining: A comparison. Technical report, CS-TR-3515, University of Maryland, 1995.

[4836] Muggleton, S. Foundations of Inductive Logic Programming. Prentice Hall, Englewood Cliffs, NJ, 1995.

[4837] Murthy, S. K. Automatic Construction of Decision Trees from Data: A Multi-Disciplinary Survey. Data Mining and Knowledge Discovery, 2(4):345--389, 1998.

[4838] Murthy, S. K. and Kasif, S. and Salzberg, S. A system for induction of oblique decision trees. J of Artificial Intelligence Research, 2:1--33, 1994.

[4839] Ng, R. T. and Lakshmanan, L. V. S. and Han, J. and Pang, A. Exploratory Mining and Pruning Optimizations of Constrained Association Rules. SIGMOD98, pages 13--24, Seattle, WA, 1998.

[4840] Niblett, T. Constructing decision trees in noisy domains. Proc. of the 2nd European Working Session on Learning, pages 67--78, Bled, Yugoslavia, 1987.

[4841] Niblett, T. and Bratko, I. Learning Decision Rules in Noisy Domains. In Bramer, M., editors, Research and Development in Expert Systems III, Cambridge, 1986. Cambridge University Press.

[4842] Omiecinski, E. Alternative Interest Measures for Mining Associations in Databases. IEEE Trans. on Knowledge and Data Engineering, 15(1):57--69, 2003.

[4843] Ozden, B. and Ramaswamy, S. and Silberschatz, A. Cyclic Association Rules. DE98, pages 412--421, Orlando, FL, 1998.

[4844] Ozgur, A. and Tan, P. N. and Kumar, V. RBA: An Integrated Framework for Regression based on Association Rules. SDM04, pages 210--221, Orlando, FL, 2004.

[4845] Park, J. S. and Chen, M.-S. and Yu, P. S. An effective hash-based algorithm for mining association rules. SIGMOD Record, 25(2):175--186, 1995.

[4846] Parr Rud, O. Data Mining Cookbook: Modeling Data for Marketing, Risk and Customer Relationship Management. John Wiley & Sons, New York, NY, 2001.

[4847] Parthasarathy, S. and Coatney, M. Efficient Discovery of Common Substructures in Macromolecules. ICDM02, pages 362--369, Maebashi City, Japan, 2002.

[4848] Pasquier, N. and Bastide, Y. and Taouil, R. and Lakhal, L. Discovering frequent closed itemsets for association rules. Proc. of the 7th Intl. Conf. on Database Theory (ICDT'99), pages 398--416, Jerusalem, Israel, 1999.

[4849] Pattipati, K. R. and Alexandridis, M. G. Application of heuristic search and information theory to sequential fault diagnosis. IEEE Trans. on Systems, Man, and Cybernetics, 20(4):872--887, 1990.

[4850] Pei, J. and Han, J. and Lu, H. J. and Nishio, S. and Tang, S. H-Mine: Hyper-Structure Mining of Frequent Patterns in Large Databases. ICDM01, pages 441--448, San Jose, CA, 2001.

[4851] Pei, J. and Han, J. and Mortazavi-Asl, B. and Chen, Q. and Dayal, U. and Hsu, M. PrefixSpan: Mining Sequential Patterns efficiently by prefix-projected pattern growth. Proc of the 17th Intl. Conf. on Data Engineering, Heidelberg, Germany, 2001.

[4852] Pei, J. and Han, J. and Mortazavi-Asl, B. and Zhu, H. Mining Access Patterns Efficiently from Web Logs. PAKDD00, pages 396--407, Kyoto, Japan, 2000.

[4853] Piatetsky-Shapiro, G. Discovery, Analysis and Presentation of Strong Rules. In G. Piatetsky-Shapiro and W. Frawley, editors, Knowledge Discovery in Databases, pages 229--248. MIT Press, Cambridge, MA, 1991.

[4854] Potter, C. and Klooster, S. and Steinbach, M. and Tan, P. N. and Kumar, V. and Shekhar, S. and Carvalho, C. Understanding Global Teleconnections of Climate to Regional Model Estimates of Amazon Ecosystem Carbon Fluxes. Global Change Biology, 10(5):693--703, 2004.

[4855] Potter, C. and Klooster, S. and Steinbach, M. and Tan, P. N. and Kumar, V. and Shekhar, S. and Myneni, R. and Nemani, R. Global Teleconnections of Ocean Climate to Terrestrial Carbon Flux. J. Geophysical Research, 108(D17), 2003.

[4856] Provost, F. J. and Fawcett, T. Analysis and Visualization of Classifier Performance: Comparison under Imprecise Class and Cost Distributions. KDD97, pages 43--48, Newport Beach, CA, 1997.

[4857] Pyle, D. Business Modeling and Data Mining. Morgan Kaufmann, San Francisco, CA, 2003.

[4858] Quinlan, J. R. C4.5: Programs for Machine Learning. Morgan-Kaufmann Publishers, San Mateo, CA, 1993.

[4859] Quinlan, J. R. Discovering rules by induction from large collection of examples. In Michie, D., editors, Expert Systems in the Micro Electronic Age. Edinburgh University Press, Edinburgh, UK, 1979.

[4860] Quinlan, J. R. Simplifying Decision Trees. Intl. J. Man-Machine Studies, 27:221--234, 1987.

[4861] Quinlan, J. R. and Rivest, R. L. Inferring Decision Trees Using the Minimum Description Length Principle. Information and Computation, 80(3):227--248, 1989.

[4862] Naren Ramakrishnan and Ananth Grama. Data Mining: From Serendipity to Science---Guest Editors' Introduction. IEEE Computer, 32(8):34-37, 1999.

[4863] Ramkumar, G. D and Ranka, S. and Tsur, S. Weighted Association Rules: Model and Algorithm. http://www.cs.ucla.edu/czdemo/tsur/, 1997.

[4864] Ramoni, M. and Sebastiani, P. Robust Bayes classifiers. Artificial Intelligence, 125:209--226, 2001.

[4865] van Rijsbergen, C. J. Information Retrieval. Butterworth-Heinemann, Newton, MA, 1978.

[4866] Roiger, R. and Geatz, M. Data Mining: A Tutorial Based Primer. Addison-Wesley, 2002.

[4867] Safavian, S. R. and Landgrebe, D. A Survey of Decision Tree Classifier Methodology. IEEE Trans. Systems, Man and Cybernetics, 22:660--674, 1998.

[4868] Sarawagi, S. and Thomas, S. and Agrawal, R. Integrating Mining with Relational Database Systems: Alternatives and Implications. SIGMOD98, pages 343--354, Seattle, WA, 1998.

[4869] Satou, K. and Shibayama, G. and Ono, T. and Yamamura, Y. and Furuichi,E. and Kuhara, S. and Takagi, T. Finding Association Rules on Heterogeneous Genome Data. Proc. of the Pacific Symp. on Biocomputing, pages 397--408, Hawaii, 1997.

[4870] Savasere, A. and Omiecinski, E. and Navathe, S. An efficient algorithm for mining association rules in large databases. Proc. of the 21st Int. Conf. on Very Large Databases (VLDB`95), pages 432-444, Zurich, Switzerland, 1995.

[4871] A. Savasere and E. Omiecinski and S. Navathe. Mining for Strong Negative Associations in a Large Database of Customer Transactions. ICDE98, pages 494--502, Orlando, Florida, 1998.

[4872] Schaffer, C. Overfitting avoidence as bias. Machine Learning, 10:153--178, 1993.

[4873] Schapire, R. E. The Boosting Approach to Machine Learning: An Overview. MSRI Workshop on Nonlinear Estimation and Classification, 2002.

[4874] Schölkopf, B. and Smola, A. J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, 2001.

[4875] Schuermann, J. and Doster, W. A decision-theoretic approach in hierarchical classifier design. Pattern Recognition, 17:359--369, 1984.

[4876] Advances in Distributed and Parallel Knowledge Discovery. AAAI Press, 2002.

[4877] Advances in Knowledge Discovery and Data Mining.. AAAI/MIT Press, 1996.

[4878] Rakesh Agrawal and Johannes Gehrke and Dimitrios Gunopulos and Prabhakar Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. In Laura M. Haas and Ashutosh Tiwary, editors, SIGMOD98, pages 94--105, Seattle, Washington, 1998. ACM Press.

[4879] Ming-Syan Chen and Jiawei Han and Philip S. Yu. Data Mining: An Overview from a Database Perspective. IEEE Transactions on Knowledge abd Data Engineering, 8(6):866-883, 1996.

[4880] Seno, M. and Karypis, G. LPMiner: An Algorithm for Finding Frequent Itemsets Using Length-Decreasing Support Constraint. ICDM01, pages 505--512, San Jose, CA, 2001.

[4881] Seno, M. and Karypis, G. SLPMiner: An Algorithm for Finding Frequent Sequential Patterns Using Length-Decreasing Support Constraint. ICDM02, pages 418--425, Maebashi City, Japan, 2002.

[4882] Shafer, J. C. and Agrawal, R. and Mehta, M. SPRINT: A Scalable Parallel Classifier for Data Mining. VLDB96, pages 544--555, Bombay, India, 1996.

[4883] Shintani, T. and Kitsuregawa, M. Hash based parallel algorithms for mining association rules. Proc of the 4th Intl. Conf. on Parallel and Distributed Info. Systems, pages 19--30, Miami Beach, FL, 1996.

[4884] Silberschatz, A. and Tuzhilin, A. What makes patterns interesting in knowledge discovery systems. IEEE Trans. on Knowledge and Data Engineering, 8(6):970--974, 1996.

[4885] Silverstein, C. and Brin, S. and Motwani, R. Beyond market baskets: Generalizing association rules to dependence rules. Data Mining and Knowledge Discovery, 2(1):39--68, 1998.

[4886] Simpson, E.-H. The Interpretation of Interaction in Contingency Tables. Journal of the Royal Statistical Society, B(13):238--241, 1951.

[4887] Singh, L. and Chen, B. and Haight, R. and Scheuermann, P. An Algorithm for Constrained Association Rule Mining in Semi-structured Data. PAKDD99, pages 148--158, Beijing, China, 1999.

[4888] Smyth, P. and Goodman, R. M. An Information Theoretic Approach to Rule Induction from Databases. IEEE Trans. on Knowledge and Data Engineering, 4(4):301--316, 1992.

[4889] Padhraic Smyth. Breaking out of the Black-Box: Research Challenges in Data Mining. DMKD01, 2001.

[4890] Padhraic Smyth and Daryl Pregibon and Christos Faloutsos. Data-driven evolution of data mining algorithms. Communications of the ACM, 45(8):33-37, 2002.

[4891] Srikant, R. and Agrawal, R. Mining Generalized Association Rules. VLDB95, pages 407--419, Zurich, Switzerland, 1995.

[4892] Srikant, R. and Agrawal, R. Mining Quantitative Association Rules in Large Relational Tables. SIGMOD96, pages 1--12, Montreal, Canada, 1996.

[4893] Srikant, R. and Agrawal, R. Mining Sequential Patterns: Generalizations and Performance Improvements. Proc. of the 5th Intl Conf. on Extending Database Technology (EDBT'96), pages 18--32, Avignon, France, 1996.

[4894] Srikant, R. and Vu, Q. and Agrawal, R. Mining Association Rules with Item Constraints. KDD97, pages 67--73, Newport Beach, CA, 1997.

[4895] Steinbach, M. and Tan, P. N. and Kumar, V. Support Envelopes: A Technique for Exploring the Structure of Association Patterns. KDD04, pages 296--305, Seattle, WA, 2004.

[4896] Steinbach, M. and Tan, P. N. and Xiong, H. and Kumar, V. Extending the Notion of Support. KDD04, pages 689--694, Seattle, WA, 2004.

[4897] Suzuki, E. Autonomous Discovery of Reliable Exception Rules. KDD97, pages 259--262, Newport Beach, CA, 1997.

[4898] Tan, P. N. and Kumar, V. Mining Association Patterns in Web Usage Data. Proc. of the Intl. Conf. on Advances in Infrastructure for e-Business, e-Education, e-Science and e-Medicine on the Internet, L'Aquila, Italy, 2002.

[4899] Tan, P. N. and Kumar, V. and Srivastava, J. Indirect Association: Mining Higher Order Dependencies in Data. PKDD00, pages 632--637, Lyon, France, 2000.

[4900] Tan, P. N. and Kumar, V. and Srivastava, J. Selecting the Right Interestingness Measure for Association Patterns. KDD02, pages 32--41, Edmonton, Canada, 2002.

[4901] Tan, P. N. and Steinbach, M. and Kumar, V. and Klooster, S. and Potter, C. and Torregrosa, A. Finding Spatio-Temporal Patterns in Earth Science Data. KDD 2001 Workshop on Temporal Data Mining, San Francisco, CA, 2001.

[4902] Tax, D. M. J. and Duin, R. P. W. Using Two-Class Classifiers for Multiclass Classification. Proc. of the 16th Intl. Conf. on Pattern Recognition (ICPR 2002), pages 124--127, Quebec, Canada, 2002.

[4903] Teng, W. G. and Hsieh, M. J. and Chen, M.-S. On the Mining of Substitution Rules for Statistically Dependent Items. ICDM02, pages 442--449, Maebashi City, Japan, 2002.

[4904] Toivonen, H and Klemettinen, M. and Ronkainen, P. and Hatonen, K. and Mannila, H. Pruning and Grouping Discovered Association Rules. ECML-95 Workshop on Statistics, Machine Learning and Knowledge Discovery in Databases, pages 47 -- 52, Heraklion, Greece, 1995.

[4905] Toivonen, H. Sampling Large Databases for Association Rules. VLDB96, pages 134--145, Bombay, India, 1996.

[4906] Tsur, S. and Ullman, J. and Abiteboul, S. and Clifton, C. and Motwani, R. and Nestorov, S. and Rosenthal, A. Query Flocks: A Generalization of Association Rule Mining. SIGMOD98, pages 1--12, Seattle, WA, 1998.

[4907] Tung, Anthony and Lu, H. J. and Han, Jiawei and Feng, Ling. Breaking the Barrier of Transactions: Mining Inter-Transaction Association Rules. KDD99, pages 297--301, San Diego, CA, 1999.

[4908] Utgoff, P. E. and Brodley, C. E. An incremental method for finding multivariate splits for decision trees. ICML90, pages 58--65, Austin, TX, 1990.

[4909] Vapnik, V. Statistical Learning Theory. John Wiley & Sons, New York, 1998.

[4910] Vapnik, V. The Nature of Statistical Learning Theory. Springer Verlag, New York, 1995.

[4911] Wang, H. and Zaniolo, C. CMP: A Fast Decision Tree Classifier Using Multivariate Predictions. ICDE00, pages 449--460, San Diego, CA, 2000.

[4912] Wang, K. and He, Y. and Han, J. Mining Frequent Itemsets Using Support Constraints. VLDB00, pages 43--52, Cairo, Egypt, 2000.

[4913] Wang, K. and Tay, S. H. and Liu, B. Interestingness-Based Interval Merger for Numeric Association Rules. KDD98, pages 121--128, New York, NY, 1998.

[4914] Wang, Q. R. and Suen, C. Y. Large tree classifier with heuristic search and global training. IEEE Trans. on Pattern Analysis and Machine Intelligence, 9(1):91--102, 1987.

[4915] Webb, A. R. Statistical Pattern Recognition. John Wiley & Sons, 2nd edition, 2002.

[4916] Webb, G. I. Discovering associations with numeric variables. KDD01, pages 383--388, San Francisco, CA, 2001.

[4917] Webb, G. I. Preliminary investigations into statistically valid exploratory rule discovery. Proc. of the Australasian Data Mining Workshop (AusDM03), Canberra, Australia, 2003.

[4918] Weiss, G. M. Mining with Rarity: A Unifying Framework. SIGKDD Explorations, 6(1):7--19, 2004.

[4919] Witten, I. H. and Frank, E. Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, 1999.

[4920] Wu, X. and Zhang, C. and Zhang, S. Mining Both Positive and Negative Association Rules. ACM Trans. on Information Systems, 22(3):381--405, 2004.

[4921] Xindong Wu and Philip S. Yu and Gregory Piatetsky-Shapiro. Data Mining: How Research Meets Practical Development?. Knowledge and Information Systems, 5(2):248-261, 2003.

[4922] Xiong, H. and He, X. and Ding, C. and Zhang, Y. and Kumar, V. and Holbrook, S. R. Identification of Functional Modules in Protein Complexes via Hyperclique Pattern Discovery. Proc. of the Pacific Symposium on Biocomputing, (PSB 2005), Maui, 2005.

[4923] Xiong, H. and Shekhar, S. and Tan, P. N. and Kumar, V. Exploiting a Support-based Upper Bound of Pearson's Correlation Coefficient for Efficiently Identifying Strongly Correlated Pairs. KDD04, pages 334-343, Seattle, WA, 2004.

[4924] Xiong, H. and Steinbach, M. and Tan, P. N. and Kumar, V. HICAP: Hierarchial Clustering with Pattern Preservation. SDM04, pages 279--290, Orlando, FL, 2004.

[4925] Xiong, H. and Tan, P. N. and Kumar, V. Mining Strong Affinity Association Patterns in Data Sets with Skewed Support Distribution. ICDM03, pages 387--394, Melbourne, FL, 2003.

[4926] Yan, X. and Han, J. gSpan: Graph-based Substructure Pattern Mining. ICDM02, pages 721--724, Maebashi City, Japan, 2002.

[4927] Yang, C. and Fayyad, U. M. and Bradley, P. S. Efficient discovery of error-tolerant frequent itemsets in high dimensions. KDD01, pages 194--203, San Francisco, CA, 2001.

[4928] Zadrozny, B. and Langford, J. C. and Abe, N. Cost-Sensitive Learning by Cost-Proportionate Example Weighting. ICDM03, pages 435--442, Melbourne, FL, 2003.

[4929] Zaki, M. J. Efficiently mining frequent trees in a forest. KDD02, pages 71--80, Edmonton, Canada, 2002.

[4930] Zaki, M. J. Generating Non-Redundant Association Rules. KDD00, pages 34--43, Boston, MA, 2000.

[4931] Zaki, M. J. Parallel and Distributed Association Mining: A Survey. IEEE Concurrency, special issue on Parallel Mechanisms for Data Mining, 7(4):14--25, 1999.

[4932] Zaki, M. J. and Orihara, M. Theoretical foundations of association rules. DMKD98, Seattle, WA, 1998.

[4933] Zaki, M. J. and Parthasarathy, S. and Ogihara, M. and Li, W. New Algorithms for Fast Discovery of Association Rules. KDD97, pages 283--286, Newport Beach, CA, 1997.

[4934] Zhang, H. and Padmanabhan, B. and Tuzhilin, A. On the Discovery of Significant Statistical Quantitative Rules. KDD04, pages 374--383, Seattle, WA, 2004.

[4935] Zhang, Z. and Lu, Y. and Zhang, B. An Effective Partioning-Combining Algorithm for Discovering Quantitative Association Rules. PAKDD97, Singapore, 1997.

[4936] Data Mining for Scientific and Engineering Applications. Kluwer Academic Publishers, 2001.

[4937] "C. Clifton and M. Kantarcioglu and J. Vaidya. Defining privacy for data mining. National Science Foundation Workshop on Next Generation Data Mining, pages 126--133, Baltimore, MD, 2002.

[4938] Large-Scale Parallel Data Mining. Springer, 2002.

[4939] Rakesh Agrawal and Ramakrishnan Srikant. Privacy-preserving data mining. SIGMOD00, pages 439--450, Dallas, Texas, 2000. ACM Press.

[4940] Mark S. Aldenderfer and Roger K. Blashfield. Cluster Analysis. Sage Publications, Los Angeles, 1985.

[4941] Michael R. Anderberg. Cluster Analysis for Applications. Academic Press, New York, 1973.

[4510] Andrews, R. and Diederich, J. and Tickle, A. A Survey and Critique of Techniques For Extracting Rules From Trained Artificial Neural Networks. Knowledge Based Systems, 8(6):373--389, 1995.

[4942] Phipps Arabie and Lawrence Hubert and G. De Soete. An overview of combinatorial data analysis. In P. Arabie and L. Hubert and G. De Soete, editors, Clustering and Classification, pages 188--217. World Scientific, Singapore, 1996.

[4943] G. Ball and D. Hall. A Clustering Technique for Summarizing Multivariate Data. Behavior Science, 12:153--155, 1967.

[4944] A. Banerjee and S. Merugu and I. S. Dhillon and J. Ghosh. Clustering with Bregman Divergences. In Michael W. Berry and Umeshwar Dayal and Chandrika Kamath and David Skillicorn, editors, SDM04, pages 234--245, Lake Buena Vista, FL, 2004.

[4945] Hans Hermann Bock and Edwin Diday. Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data (Studies in Classification, Data Analysis, and Knowledge Organization). Springer-Verlag Telos, 2000.

[4946] Ingwer Borg and Patrick Groenen. Modern Multidimensional Scaling---Theory and Applications. Springer-Verlag, 1997.

[4947] William G. Cochran. Sampling Techniques. John Wiley & Sons, 3rd edition, 1977.

[4948] James W. Demmel. Applied Numerical Linear Algebra. Society for Industrial & Applied Mathematics, 1997.

[4949] Pedro Domingos and Geoff Hulten. Mining high-speed data streams. KDD00, pages 71--80, Boston, Massachusetts, 2000. ACM Press.

[4950] Gaohua Gu, Feifang Hu and Huan Liu. Sampling and Its Application in Data Mining: A Survey. Technical report, TRA6/00, National University of Singapore, Singapore, 2000.

[4951] C. Giannella and J. Han and J. Pei and X. Yan and P. S. Yu. Mining Frequent Patterns in Data Streams at Multiple Time Granularities. In H. Kargupta and A. Joshi and K. Sivakumar and Y. Yesha, editors, Next Generation Data Mining, pages 191-212. AAAI/MIT, 2003.

[4952] D. J. Hand. Statistics and the Theory of Measurement. Journal of the Royal Statistical Society: Series A (Statistics in Society), 159(3):445-492, 1996.

[4953] Hillol Kargupta and Souptik Datta and Qi Wang and Krishnamoorthy Sivakumar. On the Privacy Preserving Properties of Random Data Perturbation Techniques. ICDM03, pages 99-106, Melbourne, Florida, 2003. IEEE Computer Society.

[4954] Daniel Kifer and Shai Ben-David and Johannes Gehrke. Detecting Change in Data Streams. VLDB04, pages 180-191, Toronto, Canada, 2004. Morgan Kaufmann.

[4955] David Krantz and R. Duncan Luce and Patrick Suppes and Amos Tversky. Foundations of Measurements: Volume 1: Additive and polynomial representations. Academic Press, New York, 1971.

[4956] Martin H. C. Law and Nan Zhang and Anil K. Jain. Nonlinear Manifold Learning for Data Streams.In Michael W. Berry and Umeshwar Dayal and Chandrika Kamath and David Skillicorn, editors, SDM04, Lake Buena Vista, Florida, 2004. SIAM.

[4957] B. W. Lindgren. Statistical Theory. CRC Press, 1993.

[4958] R. Duncan Luce and David Krantz and Patrick Suppes and Amos Tversky. Foundations of Measurements: Volume 3: Representation, Axiomatization, and Invariance. Academic Press, New York, 1990.

[4959] F. Olken and D. Rotem. Random Sampling from Databases---A Survey. Statistics & Computing, 5(1):25--42, 1995.

[4960] Jason Osborne. Notes on the Use of Data Transformations. Practical Assessment, Research & Evaluation, 28(6), 2002.

[4961] Christopher R. Palmer and Christos Faloutsos. Density biased sampling: An improved method for data mining and clustering. ACM SIGMOD Record, 29(2):82--92, 2000.

[4962] Spiros Papadimitriou and Anthony Brockwell and Christos Faloutsos. Adaptive, unsupervised stream mining. VLDB Journal, 13(3):222-239, 2004.

[4963] Foster J. Provost and David Jensen and Tim Oates. Efficient Progressive Sampling. KDD99, pages 23--32, 1999.

[4964] Stanley Smith Stevens. Measurement. In Gary Michael Maranell, editors, Scaling: A Sourcebook for Behavioral Scientists, pages 22--41. Aldine Publishing Co., Chicago, 1974.

[4965] Stanley Smith Stevens. On the Theory of Scales of Measurement. Science, 103(2684):677--680, 1946.

[4966] Patrick Suppes and David Krantz and R. Duncan Luce and Amos Tversky. Foundations of Measurements: Volume 2: Geometrical, Threshold, and Probabilistic Representations. Academic Press, New York, 1989.

[4967] Hannu Toivonen. Sampling Large Databases for Association Rules. In T. M. Vijayaraman and Alejandro P. Buchmann and C. Mohan and Nandlal L. Sarda, editors, VLDB96, pages 134--145, 1996. Morgan Kaufman.

[4968] John W. Tukey. On the Comparative Anatomy of Transformations. Annals of Mathematical Statistics, 28(3):602--632, 1957.

[4969] Vassilios S. Verykios and Elisa Bertino and Igor Nai Fovino and Loredana Parasiliti Provenza and Yucel Saygin and Yannis Theodoridis. State-of-the-art in privacy preserving data mining. SIGMOD Record, 33(1):50--57, 2004.

[4970] Richard Y. Wang and Mostapha Ziad and Yang W. Lee and Y. Richard Wang. Data Quality of The Kluwer International Series on Advances in Database Systems, Volume 23. Kluwer Academic Publishers, 2001.

[4971] Mohammed Javeed Zaki and Srinivasan Parthasarathy and Wei Li and Mitsunori Ogihara. Evaluation of Sampling for Data Mining of Association Rules. Technical report, TR617, Rensselaer Polytechnic Institute, 1996.

[4972] Feature Extraction, Construction and Selection: A Data Mining Perspective of Kluwer International Series in Engineering and Computer Science, 453. Kluwer Academic Publishers, 1998.

[4973] MIT Total Data Quality Management Program. web.mit.edu/tdqm/www/index.shtml, 2003.

[4974] Mihael Ankerst and Markus M. Breunig and Hans-Peter Kriegel and Jörg Sander. OPTICS: Ordering Points To Identify the Clustering Structure. In Alex Delis and Christos Faloutsos and Shahram Ghandeharizadeh, editors, SIGMOD99, pages 49--60, Philadelphia, Pennsylvania, 1999. ACM Press.

[4975] Daniel Barbará. Requirements for clustering data streams. SIGKDD Explorations Newsletter, 3(2):23--27, 2002.

[4976] Pavel Berkhin. Survey Of Clustering Data Mining Techniques. Technical report, Accrue Software, San Jose, CA, 2002.

[4977] J. Bilmes. A Gentle Tutorial on the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models. Technical report, ICSI-TR-97-021, University of California at Berkeley, 1997.

[4978] C. M. Bishop and M. Svensen and C. K. I. Williams. GTM: A principled alternative to the self-organizing map. In C. von der Malsburg and W. von Seelen and J. C. Vorbruggen and B. Sendhoff, editors, Artificial Neural Networks---ICANN96. Intl. Conf, Proc., pages 165-170. Springer-Verlag, Berlin, Germany, 1996.

[4979] Avrim Blum and Pat Langley. Selection of Relevant Features and Examples in Machine Learning. Artificial Intelligence, 97(1--2):245--271, 1997.

[4980] Daniel Boley. Principal Direction Divisive Partitioning. Data Mining and Knowledge Discovery, 2(4):325-344, 1998.

[4981] Paul S. Bradley and Usama M. Fayyad. Refining Initial Points for K-Means Clustering. In Jude W. Shavlik, editors, ICML98, pages 91--99, Madison, WI, 1998. Morgan Kaufmann Publishers Inc.

[4982] Paul S. Bradley and Usama M. Fayyad and Cory Reina. Scaling Clustering Algorithms to Large Databases. In Rakesh Agrawal and Paul Stolorz and Gregory Piatetsky-Shapiro, editors, KDD98, pages 9--15, New York City, 1998. AAAI Press.

[4983] Peter Cheeseman and James Kelly and Matthew Self and John Stutz and Will Taylor and Don Freeman. AutoClass: a Bayesian classification system. Readings in knowledge acquisition and learning: automating the construction and improvement of expert systems, pages 431--441. Morgan Kaufmann Publishers Inc., 1993.

[4984] James Dougherty and Ron Kohavi and Mehran Sahami. Supervised and Unsupervised Discretization of Continuous Features. ICML95, pages 194--202, 1995.

[4985] Duda, Robert O. and Hart, Peter E. and Stork, David G. Pattern Classification. John Wiley & Sons, Inc., New York, Second edition, 2001.

[4986] Tapio Elomaa and Juho Rousu. General and Efficient Multisplitting of Numerical Attributes. Machine Learning, 36(3):201--244, 1999.

[4987] Levent Ertöz and Michael Steinbach and Vipin Kumar. A New Shared Nearest Neighbor Clustering Algorithm and its Applications. Workshop on Clustering High Dimensional Data and its Applications, Proc. of Text Mine'01, First SIAM Intl. Conf. on Data Mining, Chicago, IL, USA, 2001.

[4988] Levent Ertöz and Michael Steinbach and Vipin Kumar. Finding Clusters of Different Sizes, Shapes, and Densities in Noisy, High Dimensional Data. SDM03, San Francisco, 2003. SIAM.

[4989] Martin Ester and Hans-Peter Kriegel and Jörg Sander and Michael Wimmer and Xiaowei Xu. Incremental Clustering for Mining in a Data Warehousing Environment. In Ashish Gupta and Oded Shmueli and Jennifer Widom, editors, VLDB98, pages 323--333, New York City, 1998. Morgan Kaufmann.

[4990] Martin Ester and Hans-Peter Kriegel and Jorg Sander and Xiaowei Xu. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Evangelos Simoudi and Jiawei Han and Usama M. Fayyad, editors, KDD96, pages 226--231, Portland, Oregon, 1996. AAAI Press.

[4991] Brian S. Everitt and Sabine Landau and Morven Leese. Cluster Analysis. Arnold Publishers, London, Fourth edition, 2001.

[4992] U. M. Fayyad and K. B. Irani. Multi-interval discretization of continuousvalued attributes for classification learning. Proc. 13th Int. Joint Conf. on Artificial Intelligence, pages 1022--1027, 1993. Morgan Kaufman.

[4993] Douglas Fisher. Iterative Optimization and Simplification of Hierarchical Clusterings. Journal of Artificial Intelligence Research, 4:147--179, 1996.

[4994] Douglas Fisher and Pat Langley. Conceptual clustering and its relation to numerical taxonomy. Artificial Intelligence and Statistics, :77--116, 1986.

[4995] Chris Fraley and Adrian E. Raftery. How Many Clusters? Which Clustering Method? Answers Via Model-Based Cluster Analysis. The Computer Journal, 41(8):578--588, 1998.

[4996] Venkatesh Ganti and Johannes Gehrke and Raghu Ramakrishnan. CACTUS--Clustering Categorical Data Using Summaries. KDD99, pages 73--83, 1999. ACM Press.

[4997] Allen Gersho and Robert M. Gray. Vector Quantization and Signal Compression, volume 159 of Kluwer International Series in Engineering and Computer Science. Kluwer Academic Publishers, 1992.

[4998] Joydeep Ghosh. Scalable Clustering Methods for Data Mining. In Nong Ye, editors, Handbook of Data Mining, pages 247--277. Lawrence Ealbaum Assoc, 2003.

[4999] David Gibson and Jon M. Kleinberg and Prabhakar Raghavan. Clustering Categorical Data: An Approach Based on Dynamical Systems. VLDB Journal, 8(3--4):222--236, 2000.

[5000] K. C. Gowda and G. Krishna. Agglomerative Clustering Using the Concept of Mutual Nearest Neighborhood. Pattern Recognition, 10(2):105--112, 1978.

[5001] Sudipto Guha and Adam Meyerson and Nina Mishra and Rajeev Motwani and Liadan O'Callaghan. Clustering Data Streams: Theory and Practice. IEEE Transactions on Knowledge and Data Engineering, 15(3):515--528, 2003.

[5002] Sudipto Guha and Rajeev Rastogi and Kyuseok Shim. CURE: An Efficient Clustering Algorithm for Large Databases. In Laura M. Haas and Ashutosh Tiwary, editors, SIGMOD98, pages 73--84, 1998. ACM Press.

[5003] Sudipto Guha and Rajeev Rastogi and Kyuseok Shim. ROCK: A Robust Clustering Algorithm for Categorical Attributes. In Masaru Kitsuregawa and Leszek Maciaszek and Mike Papazoglou and Calton Pu, editors, ICDE99, pages 512--521, 1999. IEEE Computer Society.

[5004] Maria Halkidi and Yannis Batistakis and Michalis Vazirgiannis. Cluster validity methods: part I. SIGMOD Record (ACM Special Interest Group on Management of Data), 31(2):40--45, 2002.

[5005] Maria Halkidi and Yannis Batistakis and Michalis Vazirgiannis. Clustering validity checking methods: part II. SIGMOD Record (ACM Special Interest Group on Management of Data), 31(3):19--27, 2002.

[5006] Greg Hamerly and Charles Elkan. Alternatives to the k-means algorithm that find better clusterings. CIKM02, pages 600--607, McLean, Virginia, 2002. ACM Press.

[5007] Jiawei Han and Micheline Kamber and Anthony Tung. Spatial Clustering Methods in Data Mining: A review. In Harvey J. Miller and Jiawei Han, editors, Geographic Data Mining and Knowledge Discovery, pages 188--217. Taylor and Francis, London, 2001.

[5008] John Hartigan. Clustering Algorithms. Wiley, New York, 1975.

[5009] Alexander Hinneburg and Daniel A. Keim. Optimal Grid-Clustering: Towards Breaking the Curse of Dimensionality in High-Dimensional Clustering. In M. P. Atkinson and M. E. Orlowska and P. Valduriez and S. B. Zdonik and M. L. Brodie, editors, VLDB99, pages 506--517, Edinburgh, Scotland, UK, 1999. Morgan Kaufmann.

[5010] Alexander Hinneburg and Daniel. A. Keim. An Efficient Approach to Clustering in Large Multimedia Databases with Noise. In Rakesh Agrawal and Paul Stolorz, editors, KDD98, pages 58--65, New York City, 1998. AAAI Press.

[5011] F. Hussain and H. Liu and C. L. Tan and M. Dash. TRC6/99: Discretization: an enabling technique. Technical report, National University of Singapore, Singapore, 1999.

[5012] Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data of Prentice Hall Advanced Reference Series. Prentice Hall, 1988. Book available online at http://www.cse.msu.edu/ : jain/Clustering_Jain_Dubes.pdf.

[5013] Anil K. Jain and M. Narasimha Murty and Patrick J. Flynn. Data clustering: A review. ACM Computing Surveys, 31(3):264--323, 1999.

[5014] Nicolas Jardine and Robin Sibson. Mathematical Taxonomy. Wiley, New York, 1971.

[5015] R. A. Jarvis and E. A. Patrick. Clustering Using a Similarity Measure Based on Shared Nearest Neighbors. IEEE Transactions on Computers, C-22(11):1025-1034, 1973.

[5016] I. T. Jolliffe. Principal Component Analysis. Springer Verlag, 2nd edition, 2002.

[5017] Istvan Jonyer and Diane J. Cook and Lawrence B. Holder. Graph-based hierarchical conceptual clustering. Journal of Machine Learning Research, 2:19--43, 2002.

[5018] Karin Kailing and Hans-Peter Kriegel and Peer Kröger. Density-Connected Subspace Clustering for High-Dimensional Data. In Michael W. Berry and Umeshwar Dayal and Chandrika Kamath and David B. Skillicorn, editors, SDM04, pages 428--439, Lake Buena Vista, Florida, 2004. SIAM.

[5019] George Karypis and Eui-Hong Han and Vipin Kumar. CHAMELEON: A Hierarchical Clustering Algorithm Using Dynamic Modeling. IEEE Computer, 32(8):68--75, 1999.

[5020] George Karypis and Eui-Hong Han and Vipin Kumar. Multilevel Refinement for Hierarchical Clustering. Technical report, TR 99-020, University of Minnesota, Minneapolis, MN, 1999.

[5021] George Karypis and Vipin Kumar. Multilevel k-way Partitioning Scheme for Irregular Graphs. Journal of Parallel and Distributed Computing, 48(1):96-129, 1998.

[5022] Leonard Kaufman and Peter J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster Analysis of Wiley Series in Probability and Statistics. John Wiley and Sons, New York, 1990.

[5023] Jon M. Kleinberg. An Impossibility Theorem for Clustering. Proc. of the 16th Annual Conf. on Neural Information Processing Systems, 2002.

[5024] Ron Kohavi and George H. John. Wrappers for Feature Subset Selection. Artificial Intelligence, 97(1--2):273--324, 1997.

[5025] Teuvo Kohonen and Thomas S. Huang and Manfred R. Schroeder. Self-Organizing Maps. Springer-Verlag, 2000.

[5026] Joseph B. Kruskal and Eric M. Uslaner. Multidimensional Scaling. Sage Publications, 1978.

[5027] Bjornar Larsen and Chinatsu Aone. Fast and Effective Text Mining Using Linear-Time Document Clustering. KDD99, pages 16--22, San Diego, California, 1999. ACM Press.

[5028] H. Liu and H. Motoda and L. Yu. Feature Extraction, Selection, and Construction. In Nong Ye, editors, The Handbook of Data Mining, pages 22--41. Lawrence Erlbaum Associates, Inc., Mahwah, NJ, 2003.

[5029] Huan Liu and Hiroshi Motoda. Feature Selection for Knowledge Discovery and Data Mining of Kluwer International Series in Engineering and Computer Science, 454. Kluwer Academic Publishers, 1998.

[5030] J. MacQueen. Some methods for classification and analysis of multivariate observations. In Le Cam, L. M. and Neyman, J., editors, Proc. of the 5th Berkeley Symp. on Mathematical Statistics and Probability, pages 281--297, 1967. University of California Press.

[5031] Michalski, R. S. and Stepp, R. E. Automated Construction of Classifications: Conceptual Clustering Versus Numerical Taxonomy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 5(4):396--409, 1983.

[5032] Glen W. Milligan. Clustering Validation: Results and Implications for Applied Analyses. In P. Arabie and L. Hubert and G. De Soete, editors, Clustering and Classification, pages 345--375. World Scientific, Singapore, 1996.

[5033] Boris Mirkin. Mathematical Classification and Clustering, volume 11 of Nonconvex Optimization and Its Applications. Kluwer Academic Publishers, 1996.

[5034] Nina Mishra and Dana Ron and Ram Swaminathan. A New Conceptual Clustering Framework. Machine Learning Journal, 56(1--3):115--151, 2004.

[5035] Luis Carlos Molina and Lluis Belanche and Angela Nebot. Feature Selection Algorithms: A Survey and Experimental Evaluation. ICDM02, 2002.

[5036] Fionn Murtagh. Clustering massive data sets. In J. Abello and P. M. Pardalos and M. G. C. Reisende, editors, Handbook of Massive Data Sets. Kluwer, 2000.

[5037] Fionn Murtagh. Multidimensional Clustering Algorithms. Physica-Verlag, Heidelberg and Vienna, 1985.

[5038] Harsha Nagesh and Sanjay Goil and Alok Choudhary. Parallel Algorithms for Clustering High-Dimensional Large-Scale Datasets. In Robert L. Grossman and Chandrika Kamath and Philip Kegelmeyer and Vipin Kumar and Raju Namburu, editors, Data Mining for Scientific and Engineering Applications, pages 335--356. Kluwer Academic Publishers, Dordrecht, Netherlands, 2001.

[5039] Raymond T. Ng and Jiawei Han. CLARANS: A Method for Clustering Objects for Spatial Data Mining. IEEE Transactions on Knowledge and Data Engineering, 14(5):1003--1016, 2002.

[5040] Dan Pelleg and Andrew W. Moore. X -means: Extending K -means with Efficient Estimation of the Number of Clusters. ICML00, pages 727--734, 2000. Morgan Kaufmann, San Francisco, CA.

[5041] Markus Peters and Mohammed J. Zaki. CLICKS: Clustering Categorical Data using K-partite Maximal Cliques. ICDE05, Tokyo, Japan, 2005.

[5042] Thomas C. Redman. Data Quality: The Field Guide. Digital Press, 2001.

[5043] Charles Romesburg. Cluster Analysis for Researchers. Life Time Learning, Belmont, CA, 1984.

[5044] J. Sander and M. Ester and H.-P. Kriegel and X. Xu. Density-Based Clustering in Spatial Databases: The Algorithm GDBSCAN and its Applications. Data Mining and Knowledge Discovery, 2(2):169--194, 1998.

[5045] Sergio M. Savaresi and Daniel Boley. A comparative analysis on the bisecting K-means and the PDDP clustering algorithms. Intelligent Data Analysis, 8(4):345-362, 2004.

[5046] Erich Schikuta and Martin Erhart. The BANG-Clustering System: Grid-Based Data Analysis. In Xiaohui Liu and Paul R. Cohen and Michael R. Berthold, editors, Advances in Intelligent Data Analysis, Reasoning about Data, Second Intl. Symposium, IDA-97, London in Lecture Notes in Computer Science, pages 513--524, 1997. Springer.

[5047] Gholamhosein Sheikholeslami and Surojit Chatterjee and Aidong Zhang. Wavecluster: A multi-resolution clustering approach for very large spatial databases. In Ashish Gupta and Oded Shmueli and Jennifer Widom, editors, VLDB98, pages 428--439, New York City, 1998. Morgan Kaufmann.

[5048] Sneath, Peter H. A. and Robert R. Sokal. Numerical Taxonomy. Freeman, San Francisco, 1971.

[5049] Helmuth Späth. Cluster Analysis Algorithms for Data Reduction and Classification of Objects, volume 4 of Computers and Their Application. Ellis Horwood Publishers, Chichester, 1980. ISBN 0-85312-141-9.

[5050] Ramakrishnan Srikant and Rakesh Agrawal. Mining Quantitative Association Rules in Large Relational Tables. In H. V. Jagadish and Inderpal Singh Mumick, editors, SIGMOD96, pages 1--12, Montreal, Quebec, Canada, 1996.

[5051] Michael Steinbach and George Karypis and Vipin Kumar. A Comparison of Document Clustering Techniques. Proc. of KDD Workshop on Text Mining, Proc. of the 6th Intl. Conf. on Knowledge Discovery and Data Mining, Boston, MA, 2000.

[5052] Robert E. Stepp and Ryszard S. Michalski. Conceptual clustering of structured objects: A goal-oriented approach. Artificial Intelligence, 28(1):43--69, 1986.

[5053] Alexander Strehl and Joydeep Ghosh. A Scalable Approach to Balanced, High-dimensional Clustering of Market-Baskets. Proc. of the 7th Intl. Conf. on High Performance Computing (HiPC 2000) in Lecture Notes in Computer Science, pages 525--536, Bangalore, India, 2000. Springer.

[5054] Charles T. Zahn. Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters. IEEE Transactions on Computers, C-20(1):68-86, 1971.

[5055] Tian Zhang and Raghu Ramakrishnan and Miron Livny. BIRCH: an efficient data clustering method for very large databases. In H. V. Jagadish and Inderpal Singh Mumick, editors, SIGMOD96, pages 103--114, Montreal, Quebec, Canada, 1996. ACM Press.

[5056] CLUTO 2.1.1: Software for Clustering High-Dimensional Datasets. /www.cs.umn.edu/ : karypis, 2003.

[4629] Agrawal, R. and Imielinski, T. and Swami, A. Database mining: A performance perspective. IEEE Transactions on Knowledge and Data Engineering, 5:914--925, 1993.

[5057] P. S. Bradley and U. M. Fayyad and C. Reina. Scaling EM (Expectation Maximization) Clustering to Large Databases. Technical report, MSR-TR-98-35, Microsoft Research, 1999.

[5058] D. A. Burn. Designing Effective Statistical Graphs. In C. R. Rao, editors, Handbook of Statistics 9. Elsevier/North-Holland, Amsterdam, The Netherlands, 1993.

[5059] Inderjit S. Dhillon and Yuqiang Guan and J. Kogan. Iterative Clustering of High Dimensional Text Data Augmented by Local Search. ICDM02, pages 131-138, 2002. IEEE Computer Society.

[5060] Inderjit S. Dhillon and Dharmendra S. Modha. Concept Decompositions for Large Sparse Text Data Using Clustering. Machine Learning, 42(1/2):143-175, 2001.

[5061] Michael Friendly. Gallery of Data Visualization. http://www.math.yorku.ca/SCS/Gallery/, 2005.

[5062] Eui-Hong Han and George Karypis and Vipin Kumar and Bamshad Mobasher. Hypergraph Based Clustering in High-Dimensional Data Sets: A Summary of Results. IEEE Data Eng. Bulletin, 21(1):15-22, 1998.

[5063] Konstantinos Kalpakis and Dhiral Gada and Vasundhara Puttagunta. Distance Measures for Effective Clustering of ARIMA Time-Series. ICDM01, pages 273-280, 2001. IEEE Computer Society.

[5064] Eamonn J. Keogh and Michael J. Pazzani. Scaling up dynamic time warping for datamining applications. Proc. of the 10th Intl. Conf. on Knowledge Discovery and Data Mining, pages 285-289, 2000.

[5065] Robert Spence. Information Visualization. ACM Press, New York, 2000.

[5066] Michael Steinbach and Pang-Ning Tan and Vipin Kumar and Steven Klooster and Christopher Potter. Discovery of climate indices using clustering. KDD '03: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 446--455, New York, NY, USA, 2003. ACM Press.

[5067] Edward R. Tufte. The Visual Display of Quantitative Information. Graphics Press, Cheshire, CT, 1986.

[5068] John W. Tukey. Exploratory data analysis. Addison-Wesley, 1977.

[5069] Velleman, Paul and Hoaglin, David. The ABC's of EDA: Applications, Basics, and Computing of Exploratory Data Analysis. Duxbury, 1981.

[5070] Bin Zhang and Meichun Hsu and Umeshwar Dayal. K-Harmonic Means---A Data Clustering Algorithm. Technical report, HPL-1999-124, Hewlett Packard Laboratories, 1999.

[5071] Ying Zhao and George Karypis. Empirical and theoretical comparisons of selected criterion functions for document clustering. Machine Learning, 55(3):311--331, 2004.

[5072] Information Visualization in Data Mining and Knowledge Discovery. Morgan Kaufmann Publishers, San Francisco, CA, 2001.

[5073] Mathematica 5.1. Wolfram Research, Inc.. http://www.wolfram.com/, 2005.

[5074] MATLAB 7.0. The MathWorks, Inc.. http://www.mathworks.com, 2005.

[5075] Microsoft Excel 2003. Microsoft, Inc.. http://www.microsoft.com/, 2003.

[4651] Agarwal, R. C. and Shafer, J. C. Parallel Mining of Association Rules. IEEE Transactions on Knowledge and Data Engineering, 8(6):962--969, 1998.

[4652] Aggarwal, C. C. and Sun, Z. and Yu, P. S. Online Generation of Profile Association Rules. KDD98, pages 129--133, New York, NY, 1996.

[4653] Aggarwal, C. C. and Yu, P. S. Mining Associations with the Collective Strength Approach. IEEE Trans. on Knowledge and Data Engineering, 13(6):863--873, 2001.

[4654] Aggarwal, C. C. and Yu, P. S. Mining Large Itemsets for Association Rules. Data Engineering Bulletin, 21(1):23--31, 1998.

[4655] Agrawal, R. and Imielinski, T. and Swami, A. Mining association rules between sets of items in large databases. Proc. ACM SIGMOD Intl. Conf. Management of Data, pages 207--216, Washington, DC, 1993.

[4656] Agrawal, R. and Srikant, R. Mining Sequential Patterns. Proc. of Intl. Conf. on Data Engineering, pages 3--14, Taipei, Taiwan, 1995.

[4657] Aha, D. W. A study of instance-based algorithms for supervised learning tasks: mathematical, empirical, and psychological evaluations. PhD thesis, University of California, Irvine, 1990.

[4658] Ali, K. and Manganaris, S. and Srikant, R. Partial Classification using Association Rules. KDD97, pages 115--118, Newport Beach, CA, 1997.

[4659] Alsabti, K. and Ranka, S. and Singh, V. CLOUDS: A Decision Tree Classifier for Large Datasets. KDD98, pages 2--8, New York, NY, 1998.

[4660] Aumann, Y. and Lindell, Y. A Statistical Theory for Quantitative Association Rules. KDD99, pages 261--270, San Diego, CA, 1999.

[5076] E. F. Codd and S. B. Codd and C. T. Smalley. Providing OLAP (On-line Analytical Processing) to User- Analysts: An IT Mandate. White Paper, E.F. Codd and Associates, 1993.

[5077] Jim Gray and Surajit Chaudhuri and Adam Bosworth and Andrew Layman and Don Reichart and Murali Venkatrao and Frank Pellow and Hamid Pirahesh. Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals. Journal Data Mining and Knowledge Discovery, 1(1):29--53, 1997.

[5078] Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems. McGraw-Hill, 3rd edition, 2002.

[5079] Arie Shoshani. OLAP and statistical databases: similarities and differences. Proc. of the Sixteenth ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems, pages 185--196, 1997. ACM Press.

[5080] Zhong, N. and Yao, Y. Y. and Ohsuga, S. Peculiarity Oriented Multi-database Mining. PKDD99, pages 136--146, Prague, Czech Republic, 1999.

[5081] R: A language and environment for statistical computing and graphics. The R Project for Statistical Computing. http://www.r-project.org/, 2005.

[4679] Allwein, E. L. and Schapire, R. E. and Singer, Y. Reducing Multiclass to Binary: A Unifying Approach to Margin Classifiers. Journal of Machine Learning Research, 1:113--141, 2000.

[4680] Antonie, M-L. and Zaďane, O. R. Mining Positive and Negative Association Rules: An Approach for Confined Rules. PKDD04, pages 27--38, Pisa, Italy, 2004.

[5082] S-PLUS. Insightful Corporation. http://www.insightful.com, 2005.

[5083] SAS: Statistical Analysis System. SAS Institute Inc.. http://www.sas.com/, 2005.

[4683] Ayres, J. and Flannick, J. and Gehrke, J. and Yiu, T. Sequential Pattern mining using a bitmap representation. KDD02, pages 429-435, Edmonton, Canada, 2002.

[4684] Barbará, D. and Couto, J. and Jajodia, S. and Wu, N. ADAM: A Testbed for Exploring the Use of Data Mining in Intrusion Detection. SIGMOD Record, 30(4):15--24, 2001.

[4685] Bay, S. D. and Pazzani, M. Detecting Group Differences: Mining Contrast Sets. Data Mining and Knowledge Discovery, 5(3):213--246, 2001.

[4686] Bayardo, R. Efficiently Mining Long Patterns from Databases. SIGMOD98, pages 85--93, Seattle, WA, 1998.

[4687] Bayardo, R. and Agrawal, R. Mining the Most Interesting Rules. KDD99, pages 145--153, San Diego, CA, 1999.

[4688] Benjamini, Y. and Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal Royal Statistical Society B, 57(1):289--300, 1995.

[4689] Breslow, L. A. and Aha, D. W. Simplifying Decision Trees: A Survey. Knowledge Engineering Review, 12(1):1--40, 1997.

[5084] SPSS: Statistical Package for the Social Sciences. SPSS, Inc.. http://www.spss.com/, 2005.

[4691] Bennett, K. and Campbell, C. Support Vector Machines: Hype or Hallelujah. SIGKDD Explorations, 2(2):1--13, 2000.

[4692] Berry, M. J. A. and Linoff, G. Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management. Wiley Computer Publishing, 2nd edition, 2004.

[4693] Bishop, C. M. Neural Networks for Pattern Recognition. Oxford University Press, Oxford, U.K., 1995.

[4694] Bolton, R. J. and Hand, D. J. and Adams, N. M. Determining Hit Rate in Pattern Search. Proc. of the ESF Exploratory Workshop on Pattern Detection and Discovery in Data Mining, pages 36--48, London, UK, 2002.

[4695] Boulicaut, J-F. and Bykowski, A. and Jeudy, B. Towards the Tractable Discovery of Association Rules with Negations. Proc. of the 4th Intl. Conf on Flexible Query Answering Systems FQAS'00, pages 425--434, Warsaw, Poland, 2000.

[4696] Bradley, A. P. The use of the area under the ROC curve in the Evaluation of Machine Learning Algorithms. Pattern Recognition, 30(7):1145--1149, 1997.

[4697] Paul S. Bradley and Johannes Gehrke and Raghu Ramakrishnan and Ramakrishnan Srikant. Scaling mining algorithms to large databases. Communications of the ACM, 45(8):38-43, 2002.

[4698] Breiman, L. Bagging Predictors. Machine Learning, 24(2):123--140, 1996.

[4699] Breiman, L. Bias, Variance, and Arcing Classifiers. Technical report, 486, University of California, Berkeley, CA, 1996.

[4700] Breiman, L. Random Forests. Machine Learning, 45(1):5--32, 2001.

[4701] Breiman, L. and Friedman, J. H. and Olshen, R. and Stone, C. J. Classification and Regression Trees. Chapman & Hall, New York, 1984.

[4702] Brin, S. and Motwani, R. and Silverstein, C. Beyond market baskets: Generalizing association rules to correlations. Proc. ACM SIGMOD Intl. Conf. Management of Data, pages 265--276, Tucson, AZ, 1997.

[4703] Brin, S. and Motwani, R. and Ullman, J. and Tsur, S. Dynamic Itemset Counting and Implication Rules for market basket data. SIGMOD97, pages 255--264, Tucson, AZ, 1997.

[4704] Buntine, W. Learning classification trees. In Hand, D. J., editors, Artificial Intelligence Frontiers in Statistics, pages 182--201, 1993. Chapman & Hall, London.

[4705] Burges, C. J. C. A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 2(2):121--167, 1998.

[4706] Cai, C. H. and Fu, A. and Cheng, C. H. and Kwong, W. W. Mining Association Rules with Weighted Items. Proc. of IEEE Intl. Database Engineering and Applications Symp., pages 68--77, Cardiff, Wales, 1998.

[4707] Cant u' -Paz, E. and Kamath, C. Using evolutionary algorithms to induce oblique decision trees. Proc. of the Genetic and Evolutionary Computation Conf., pages 1053--1060, San Francisco, CA, 2000.

[4708] Chakrabarti, S. Mining the Web: Discovering Knowledge from Hypertext Data. Morgan Kaufmann, San Francisco, CA, 2003.

[4709] Chawla, N. V. and Bowyer, K. W. and Hall, L. O. and Kegelmeyer, W. P. SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16:321--357, 2002.

[4710] Chawla, N. V. and Japkowicz, N. and Kolcz, A. Editorial: Special Issue on Learning from Imbalanced Data Sets. SIGKDD Explorations, 6(1):1--6, 2004.

[4711] Chen, Q. and Dayal, U. and Hsu, M. A Distributed OLAP infrastructure for E-Commerce. Proc. of the 4th IFCIS Intl. Conf. on Cooperative Information Systems, pages 209--220, Edinburgh, Scotland, 1999.

[4712] Cheng, H. and Yan, X. and Han, J. IncSpan: incremental mining of sequential patterns in large database. KDD04, pages 527-532, Seattle, WA, 2004.

[4713] Cherkassky, V. and Mulier, F. Learning from Data: Concepts, Theory, and Methods. Wiley Interscience, 1998.

[4714] Cheung, D. C. and Lee, S. D. and Kao, B. A General Incremental Technique for Maintaining Discovered Association Rules. Proc. of the 5th Intl. Conf. on Database Systems for Advanced Applications, pages 185--194, Melbourne, Australia, 1997.

[4715] Clark, P. and Boswell, R. Rule Induction with CN2: Some Recent Improvements. Machine Learning: Proc. of the 5th European Conf. (EWSL-91), pages 151--163, 1991.

[4716] Clark, P. and Niblett, T. The CN2 Induction Algorithm. Machine Learning, 3(4):261--283, 1989.

[4717] Cohen, W. W. Fast Effective Rule Induction. ICML95, pages 115--123, Tahoe City, CA, 1995.

[4718] Cooley, R. and Tan, P. N. and Srivastava, J. Discovery of Interesting Usage Patterns from Web Data. In Spiliopoulou, M. and Masand, B., editors, Advances in Web Usage Analysis and User Profiling, pages 163--182. Lecture Notes in Computer Science, 2000.

[4719] Cost, S. and Salzberg, S. A Weighted Nearest Neighbor Algorithm for Learning with Symbolic Features. Machine Learning, 10:57--78, 1993.

[4720] Cover, T. M. and Hart, P. E. Nearest Neighbor Pattern Classification. Knowledge Based Systems, 8(6):373--389, 1995.

[4721] Cristianini, N. and Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, 2000.

[4722] Dietterich, T. G. Ensemble Methods in Machine Learning. First Intl. Workshop on Multiple Classifier Systems, Cagliari, Italy, 2000.

[4723] Dietterich, T. G. and Bakiri, G. Solving Multiclass Learning Problems via Error-Correcting Output Codes. Journal of Artificial Intelligence Research, 2:263--286, 1995.

[4724] Dokas, P. and Ertöz, L. and Kumar, V. and Lazarevic, A. and Srivastava, J. and Tan, P. N. Data Mining for Network Intrusion Detection. Proc. NSF Workshop on Next Generation Data Mining, Baltimore, MD, 2002.

[4725] Domingos, P. MetaCost: A General Method for Making Classifiers Cost-Sensitive. KDD99, pages 155--164, San Diego, CA, 1999.

[4726] Domingos, P. The RISE system: Conquering without separating. Proc. of the 6th IEEE Intl. Conf. on Tools with Artificial Intelligence, pages 704--707, New Orleans, LA, 1994.

[4727] Domingos, P. The Role of Occam's Razor in Knowledge Discovery. Data Mining and Knowledge Discovery, 3(4):409--425, 1999.

[4728] Domingos, P. and Pazzani, M. On the Optimality of the Simple Bayesian Classifier under Zero-One Loss. Machine Learning, 29(2-3):103--130, 1997.

[4729] Dong, G. and Li, J. Efficient Mining of Emerging Patterns: Discovering Trends and Differences. KDD99, pages 43--52, San Diego, CA, 1999.

[4730] Dong, G. and Li, J. Interestingness of discovered association rules in terms of neighborhood-based unexpectedness. PAKDD98, pages 72--86, Melbourne, Australia, 1998.

[4731] Drummond, C. and Holte, R. C. C4.5, Class imbalance, and Cost sensitivity: Why under-sampling beats over-sampling. ICML'2004 Workshop on Learning from Imbalanced Data Sets II, Washington, DC, 2003.

[4732] Duda, R. O. and Hart, P. E. and Stork, D. G. Pattern Classification. John Wiley & Sons, Inc., New York, 2nd edition, 2001.

[4733] DuMouchel, W. and Pregibon, D. Empirical Bayes Screening for Multi-Item Associations. KDD01, pages 67--76, San Francisco, CA, 2001.

[4734] Dunham, M. H. Data Mining: Introductory and Advanced Topics. Prentice Hall, 2002.

[4735] Dunkel, B. and Soparkar, N. Data Organization and Access for Efficient Data Mining. ICDE99, pages 522--529, Sydney, Australia, 1999.

[4736] Efron, B. and Tibshirani, R. Cross-validation and the Bootstrap: Estimating the Error Rate of a Prediction Rule. Technical report, Stanford University, 1995.

[4737] Elkan, C. The Foundations of Cost-Sensitive Learning. Proc. of the 17th Intl. Joint Conf. on Artificial Intelligence, pages 973--978, Seattle, WA, 2001.

[4738] Esposito, F. and Malerba, D. and Semeraro, G. A Comparative Analysis of Methods for Pruning Decision Trees. IEEE Trans. Pattern Analysis and Machine Intelligence, 19(5):476--491, 1997.

[4739] F u ¨ rnkranz, J. and Widmer, G. Incremental reduced error pruning. ICML94, pages 70--77, New Brunswick, NJ, 1994.

[4740] Fabris, C. C. and Freitas, A. A. Discovering surprising patterns by detecting occurrences of Simpson's paradox. Proc. of the 19th SGES Intl. Conf. on Knowledge-Based Systems and Applied Artificial Intelligence), pages 148--160, Cambridge, UK, 1999.

[4741] Fan, W. and Stolfo, S. J. and Zhang, J. and Chan, P. K. AdaCost: misclassification cost-sensitive boosting. ICML99, pages 97--105, Bled, Slovenia, 1999.

[4742] Usama M. Fayyad and Gregory Piatetsky-Shapiro and Padhraic Smyth. From Data Mining to Knowledge Discovery: An Overview. Advances in Knowledge Discovery and Data Mining, pages 1-34. AAAI Press, 1996.

[4743] Feng, L. and Lu, H. J. and Yu, J. X. and Han, J. Mining inter-transaction associations with templates. CIKM99, pages 225--233, Kansas City, Missouri, 1999.

[4744] Ferri, C. and Flach, P. and Hernandez-Orallo, J. Learning Decision Trees Using the Area Under the ROC Curve. ICML02, pages 139--146, Sydney, Australia, 2002.

[4745] Fisher, R. A. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7:179--188, 1936.

[4746] Freitas, A. A. Understanding the crucial differences between classification and discovery of association rules---a position paper. SIGKDD Explorations, 2(1):65--69, 2000.

[4747] Freund, Y. and Schapire, R. E. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119--139, 1997.

[4748] Friedman, J. H. Data Mining and Statistics: What's the Connection?. Unpublished. www-stat.stanford.edu/ : jhf/ftp/dm-stat.ps, 1997.

[4749] Friedman, J. H. and Fisher, N. I. Bump hunting in high-dimensional data. Statistics and Computing, 9(2):123--143, 1999.

[4750] Fukuda, T. and Morimoto, Y. and Morishita, S. and Tokuyama, T. Mining Optimized Association Rules for Numeric Attributes. PODS96, pages 182--191, Montreal, Canada, 1996.

[4751] Fukunaga, K. Introduction to Statistical Pattern Recognition. Academic Press, New York, 1990.

[4752] Garofalakis, M. N. and Rastogi, R. and Shim, K. SPIRIT: Sequential Pattern Mining with Regular Expression Constraints. VLDB99, pages 223--234, Edinburgh, Scotland, 1999.

[4753] Gehrke, J. and Ramakrishnan, R. and Ganti, V. RainForest---A Framework for Fast Decision Tree Construction of Large Datasets. Data Mining and Knowledge Discovery, 4(2/3):127--162, 2000.

[4754] Clark Glymour and David Madigan and Daryl Pregibon and Padhraic Smyth. Statistical Themes and Lessons for Data Mining. Data Mining and Knowledge Discovery, 1(1):11--28, 1997.

[4755] Robert L. Grossman and Mark F. Hornick and Gregor Meyer. Data mining standards initiatives. Communications of the ACM, 45(8):59-61, 2002.

[4756] Gunopulos, D. and Khardon, R. and Mannila, H. and Toivonen, H. Data Mining, Hypergraph Transversals, and Machine Learning. PODS97, pages 209--216, Tucson, AZ, 1997.

[4757] Han, E.-H. and Karypis, G. and Kumar, V. Min-Apriori: An Algorithm for Finding Association Rules in Data with Continuous Attributes. http://www.cs.umn.edu/han, 1997.

[4758] Han, E.-H. and Karypis, G. and Kumar, V. Scalable Parallel Data Mining for Association Rules. SIGMOD97, pages 277--288, Tucson, AZ, 1997.

[4759] Han, E.-H. and Karypis, G. and Kumar, V. Text Categorization Using Weight Adjusted k-Nearest Neighbor Classification. PAKDD01, Lyon, France, 2001.

[4760] Han, E.-H. and Karypis, G. and Kumar, V. and Mobasher, B. Clustering Based on Association Rule Hypergraphs. DMKD97, Tucson, AZ, 1997.

[4761] Han, J. and Fu, Y. Mining Multiple-Level Association Rules in Large Databases. IEEE Trans. on Knowledge and Data Engineering, 11(5):798--804, 1999.

[4762] Han, J. and Fu, Y. and Koperski, K. and Wang, W. and Zaďane, O. R. DMQL: A data mining query language for relational databases. DMKD96, Montreal, Canada, 1996.

[4763] Han, J. and Kamber, M. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, San Francisco, 2001.

[4764] Han, J. and Pei, J. and Yin, Y. Mining Frequent Patterns without Candidate Generation. Proc. ACM-SIGMOD Int. Conf. on Management of Data (SIGMOD'00), pages 1--12, Dallas, TX, 2000.

[4765] Jiawei Han and Russ B. Altman and Vipin Kumar and Heikki Mannila and Daryl Pregibon. Emerging scientific applications in data mining. Communications of the ACM, 45(8):54-58, 2002.

[4766] Hand, D. J. Data Mining: Statistics and More?. The American Statistician, 52(2):112--118, 1998.

[4767] Hand, D. J. and Mannila, H. and Smyth, P. Principles of Data Mining. MIT Press, 2001.

[4768] Hastie, T. and Tibshirani, R. Classification by pairwise coupling. Annals of Statistics, 26(2):451--471, 1998.

[4769] Hastie, T. and Tibshirani, R. and Friedman, J. H. The Elements of Statistical Learning: Data Mining, Inference, Prediction. Springer, New York, 2001.

[4770] Hearst, M. Trends & Controversies: Support Vector Machines. IEEE Intelligent Systems, 13(4):18--28, 1998.

[4771] Heath, D. and Kasif, S. and Salzberg, S. Induction of Oblique Decision Trees. Proc. of the 13th Intl. Joint Conf. on Artificial Intelligence, pages 1002--1007, Chambery, France, 1993.

[4772] Heckerman, D. Bayesian Networks for Data Mining. Data Mining and Knowledge Discovery, 1(1):79--119, 1997.

[4773] Hidber, C. Online Association Rule Mining. SIGMOD99, pages 145--156, Philadelphia, PA, 1999.

[4774] Hilderman, R. J. and Hamilton, H. J. Knowledge Discovery and Measures of Interest. Kluwer Academic Publishers, 2001.

[4775] Hipp, J. and Guntzer, U. and Nakhaeizadeh, G. Algorithms for Association Rule Mining---A General Survey. SigKDD Explorations, 2(1):58--64, 2000.

[4776] Hofmann, H. and Siebes, A. P. J. M. and Wilhelm, A. F. X. Visualizing Association Rules with Interactive Mosaic Plots. KDD00, pages 227--235, Boston, MA, 2000.

[4777] Holt, J. D. and Chung, S. M. Efficient Mining of Association Rules in Text Databases. CIKM99, pages 234--242, Kansas City, Missouri, 1999.

[4778] Holte, R. C. Very Simple Classification Rules Perform Well on Most Commonly Used Data sets. Machine Learning, 11:63--91, 1993.

[4779] Houtsma, M. and Swami, A. Set-oriented Mining for Association Rules in Relational Databases. ICDE95, pages 25--33, Taipei, Taiwan, 1995.

[4780] Huang, Y. and Shekhar, S. and Xiong, H. Discovering Co-location Patterns from Spatial Datasets: A General Approach. IEEE Trans. on Knowledge and Data Engineering, 16(12):1472--1485, 2004.

[4781] Imielinski, T. and Virmani, A. and Abdulghani, A. DataMine: Application Programming Interface and Query Language for Database Mining. KDD96, pages 256--262, Portland, Oregon, 1996.

[4782] Inokuchi, A. and Washio, T. and Motoda, H. An Apriori-based Algorithm for Mining Frequent Substructures from Graph Data. PKDD00, pages 13--23, Lyon, France, 2000.

[4783] Jain, A. K. and Duin, R. P. W. and Mao, J. Statistical Pattern Recognition: A Review. IEEE Tran. Patt. Anal. and Mach. Intellig., 22(1):4--37, 2000.

[4784] Japkowicz, N. The Class Imbalance Problem: Significance and Strategies. Proc. of the 2000 Intl. Conf. on Artificial Intelligence: Special Track on Inductive Learning, pages 111--117, Las Vegas, NV, 2000.

[4785] Jaroszewicz, S. and Simovici, D. Interestingness of Frequent Itemsets Using Bayesian Networks as Background Knowledge. KDD04, pages 178--186, Seattle, WA, 2004.

[4786] Jensen, D. and Cohen, P. R. Multiple Comparisons in Induction Algorithms. Machine Learning, 38(3):309--338, 2000.

[4787] Joshi, M. V. On Evaluating Performance of Classifiers for Rare Classes. ICDM02, Maebashi City, Japan, 2002.

[4788] Joshi, M. V. and Agarwal, R. C. and Kumar, V. Mining Needles in a Haystack: Classifying Rare Classes via Two-Phase Rule Induction. SIGMOD01, pages 91-102, Santa Barbara, CA, 2001.

[4789] Joshi, M. V. and Agarwal, R. C. and Kumar, V. Predicting rare classes: can boosting make any weak learner strong?. KDD02, pages 297-306, Edmonton, Canada, 2002.

[4790] Joshi, M. V. and Karypis, G. and Kumar, V. A Universal Formulation of Sequential Patterns. Proc. of the KDD'2001 workshop on Temporal Data Mining, San Francisco, CA, 2001.

[4791] Joshi, M. V. and Karypis, G. and Kumar, V. ScalParC: A New Scalable and Efficient Parallel Classification Algorithm for Mining Large Datasets. Proc. of 12th Intl. Parallel Processing Symp. (IPPS/SPDP), pages 573-579, Orlando, FL, 1998.

[4792] Joshi, M. V. and Kumar, V. CREDOS: Classification Using Ripple Down Structure (A Case for Rare Classes). SDM04, pages 321-332, Orlando, FL, 2004.

[4793] Kamber, M. and Shinghal, R. Evaluating the Interestingness of Characteristic Rules. KDD96, pages 263--266, Portland, Oregon, 1996.

[4794] Kantardzic, M. Data Mining: Concepts, Models, Methods, and Algorithms. Wiley-IEEE Press, Piscataway, NJ, 2003.

[4795] Kass, G. V. An Exploratory Technique for Investigating Large Quantities of Categorical Data. Applied Statistics, 29:119--127, 1980.

[4796] Kim, B. and Landgrebe, D. Hierarchical decision classifiers in high-dimensional and large class data. IEEE Trans. on Geoscience and Remote Sensing, 29(4):518--528, 1991.

[4797] Klemettinen, M. A Knowledge Discovery Methodology for Telecommunication Network Alarm Databases. PhD thesis, University of Helsinki, 1999.

[4798] Kohavi, R. A Study on Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. Proc. of the 15th Intl. Joint Conf. on Artificial Intelligence, pages 1137--1145, Montreal, Canada, 1995.

[4799] Kong, E. B. and Dietterich, T. G. Error-Correcting Output Coding Corrects Bias and Variance. ICML95, pages 313--321, Tahoe City, CA, 1995.

[4800] Kosters, W. A. and Marchiori, E. and Oerlemans, A. Mining Clusters with Association Rules. The 3rd Symp. on Intelligent Data Analysis (IDA99), pages 39--50, Amsterdam, 1999.

[4801] Kubat, M. and Matwin, S. Addressing the Curse of Imbalanced Training Sets: One Sided Selection. ICML97, pages 179--186, Nashville, TN, 1997.

[4802] Kulkarni, S. R. and Lugosi, G. and Venkatesh, S. S. Learning Pattern Classification---A Survey. IEEE Tran. Inf. Theory, 44(6):2178--2206, 1998.

[4803] Kumar, V. and Joshi, M. V. and Han, E.-H. and Tan, P. N. and Steinbach, M. High Performance Data Mining. High Performance Computing for Computational Science (VECPAR 2002), pages 111-125. Springer, 2002.

[4804] Kuok, C. M. and Fu, A. and Wong, M. H. Mining Fuzzy Association Rules in Databases. ACM SIGMOD Record, 27(1):41--46, 1998.

[4805] Kuramochi, M. and Karypis, G. Discovering Frequent Geometric Subgraphs. ICDM02, pages 258--265, Maebashi City, Japan, 2002.

[4806] Kuramochi, M. and Karypis, G. Frequent Subgraph Discovery. ICDM01, pages 313--320, San Jose, CA, 2001.

[4807] Diane Lambert. What Use is Statistics for Massive Data?. ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, pages 54-62, 2000.

[4808] Landeweerd, G. and Timmers, T. and Gersema, E. and Bins, M. and Halic, M. Binary tree versus single level tree classification of white blood cells. Pattern Recognition, 16:571--577, 1983.

[4809] Langley, P. and Iba, W. and Thompson, K. An analysis of Bayesian classifiers. Proc. of the 10th National Conf. on Artificial Intelligence, pages 223--228, 1992.

[4810] Lee, W. and Stolfo, S. J. and Mok, K. W. Adaptive Intrusion Detection: A Data Mining Approach. Artificial Intelligence Review, 14(6):533--567, 2000.

[4811] Lent, B. and Swami, A. and Widom, J. Clustering Association Rules. ICDE97, pages 220--231, Birmingham, U.K, 1997.

[4812] Lewis, D. D. Naive Bayes at Forty: The Independence Assumption in Information Retrieval. Proc. of the 10th European Conf. on Machine Learning (ECML 1998), pages 4--15, 1998.

[4813] Li, W. and Han, J. and Pei, J. CMAR: Accurate and Efficient Classification Based on Multiple Class-association Rules. ICDM01, pages 369--376, San Jose, CA, 2001.

[4814] Liu, B. and Hsu, W. and Chen, S. Using General Impressions to Analyze Discovered Classification Rules. KDD97, pages 31--36, Newport Beach, CA, 1997.

[4815] Liu, B. and Hsu, W. and Ma, Y. Integrating Classification and Association Rule Mining. KDD98, pages 80--86, New York, NY, 1998.

[4816] Liu, B. and Hsu, W. and Ma, Y. Mining association rules with multiple minimum supports. KDD99, pages 125--134, San Diego, CA, 1999.

[4817] Liu, B. and Hsu, W. and Ma, Y. Pruning and Summarizing the Discovered Associations. KDD99, pages 125--134, San Diego, CA, 1999.

[4818] Mangasarian, O. Data Mining via Support Vector Machines. Technical report, Technical Report 01-05, Data Mining Institute, 2001.

[4819] Mannila, H. and Toivonen, H. and Verkamo, A. I. Discovery of Frequent Episodes in Event Sequences. Data Mining and Knowledge Discovery, 1(3):259--289, 1997.

[4820] Marcus, A. and Maletic, J. I. and Lin, K.-I. Ordinal association rules for error identification in data sets. CIKM01, pages 589--591, Atlanta, GA, 2001.

[4821] Margineantu, D. D. and Dietterich, T. G. Learning Decision Trees for Loss Minimization in Multi-Class Problems.Technical report, 99-30-03, Oregon State University, 1999.

[4822] Megiddo, N. and Srikant, R. Discovering Predictive Association Rules. KDD98, pages 274--278, New York, 1998.

[4823] Mehta, M. and Agrawal, R. and Rissanen, J. SLIQ: A Fast Scalable Classifier for Data Mining. Proc. of the 5th Intl. Conf. on Extending Database Technology, pages 18--32, Avignon, France, 1996.

[4824] Meo, R. and Psaila, G. and Ceri, S. A New SQL-like Operator for Mining Association Rules. VLDB96, pages 122--133, Bombay, India, 1996.

[4825] Michalski, R. S. A theory and methodology of inductive learning. Artificial Intelligence, 20:111--116, 1983.

[4826] Michalski, R. S. and Mozetic, I. and Hong, J. and Lavrac, N. The Multi-Purpose Incremental Learning System AQ15 and Its Testing Application to Three Medical Domains. Proc. of 5th National Conf. on Artificial Intelligence, Orlando, 1986.

[4827] Michie, D. and Spiegelhalter, D. J. and Taylor, C. C. Machine Learning, Neural and Statistical Classification. Ellis Horwood, Upper Saddle River, NJ, 1994.

[4828] Miller, R. J. and Yang, Y. Association Rules over Interval Data. SIGMOD97, pages 452--461, Tucson, AZ, 1997.

[4829] Mingers, J. An empirical comparison of pruning methods for decision tree induction. Machine Learning, 4:227--243, 1989.

[4830] Mingers, J. Expert Systems---Rule Induction with Statistical Data. J Operational Research Society, 38:39--47, 1987.

[4831] Mitchell, T. Machine Learning. McGraw-Hill, Boston, MA, 1997.

[4832] Moret, B. M. E. Decision Trees and Diagrams. Computing Surveys, 14(4):593--623, 1982.

[4833] Morimoto, Y. and Fukuda, T. and Matsuzawa, H. and Tokuyama, T. and Yoda, K. Algorithms for mining association rules for binary segmentations of huge categorical databases. VLDB98, pages 380--391, New York, 1998.

[4834] Mosteller, F. Association and Estimation in Contingency Tables. Journal of the American Statistical Association, 63:1--28, 1968.

[4835] Mueller, A. Fast sequential and parallel algorithms for association rule mining: A comparison. Technical report, CS-TR-3515, University of Maryland, 1995.

[4836] Muggleton, S. Foundations of Inductive Logic Programming. Prentice Hall, Englewood Cliffs, NJ, 1995.

[4837] Murthy, S. K. Automatic Construction of Decision Trees from Data: A Multi-Disciplinary Survey. Data Mining and Knowledge Discovery, 2(4):345--389, 1998.

[4838] Murthy, S. K. and Kasif, S. and Salzberg, S. A system for induction of oblique decision trees. J of Artificial Intelligence Research, 2:1--33, 1994.

[4839] Ng, R. T. and Lakshmanan, L. V. S. and Han, J. and Pang, A. Exploratory Mining and Pruning Optimizations of Constrained Association Rules. SIGMOD98, pages 13--24, Seattle, WA, 1998.

[4840] Niblett, T. Constructing decision trees in noisy domains. Proc. of the 2nd European Working Session on Learning, pages 67--78, Bled, Yugoslavia, 1987.

[4841] Niblett, T. and Bratko, I. Learning Decision Rules in Noisy Domains. In Bramer, M., editors, Research and Development in Expert Systems III, Cambridge, 1986. Cambridge University Press.

[4842] Omiecinski, E. Alternative Interest Measures for Mining Associations in Databases. IEEE Trans. on Knowledge and Data Engineering, 15(1):57--69, 2003.

[4843] Ozden, B. and Ramaswamy, S. and Silberschatz, A. Cyclic Association Rules. DE98, pages 412--421, Orlando, FL, 1998.

[4844] Ozgur, A. and Tan, P. N. and Kumar, V. RBA: An Integrated Framework for Regression based on Association Rules. SDM04, pages 210--221, Orlando, FL, 2004.

[4845] Park, J. S. and Chen, M.-S. and Yu, P. S. An effective hash-based algorithm for mining association rules. SIGMOD Record, 25(2):175--186, 1995.

[4846] Parr Rud, O. Data Mining Cookbook: Modeling Data for Marketing, Risk and Customer Relationship Management. John Wiley & Sons, New York, NY, 2001.

[4847] Parthasarathy, S. and Coatney, M. Efficient Discovery of Common Substructures in Macromolecules. ICDM02, pages 362--369, Maebashi City, Japan, 2002.

[4848] Pasquier, N. and Bastide, Y. and Taouil, R. and Lakhal, L. Discovering frequent closed itemsets for association rules. Proc. of the 7th Intl. Conf. on Database Theory (ICDT'99), pages 398--416, Jerusalem, Israel, 1999.

[4849] Pattipati, K. R. and Alexandridis, M. G. Application of heuristic search and information theory to sequential fault diagnosis. IEEE Trans. on Systems, Man, and Cybernetics, 20(4):872--887, 1990.

[4850] Pei, J. and Han, J. and Lu, H. J. and Nishio, S. and Tang, S. H-Mine: Hyper-Structure Mining of Frequent Patterns in Large Databases. ICDM01, pages 441--448, San Jose, CA, 2001.

[4851] Pei, J. and Han, J. and Mortazavi-Asl, B. and Chen, Q. and Dayal, U. and Hsu, M. PrefixSpan: Mining Sequential Patterns efficiently by prefix-projected pattern growth. Proc of the 17th Intl. Conf. on Data Engineering, Heidelberg, Germany, 2001.

[4852] Pei, J. and Han, J. and Mortazavi-Asl, B. and Zhu, H. Mining Access Patterns Efficiently from Web Logs. PAKDD00, pages 396--407, Kyoto, Japan, 2000.

[4853] Piatetsky-Shapiro, G. Discovery, Analysis and Presentation of Strong Rules. In G. Piatetsky-Shapiro and W. Frawley, editors, Knowledge Discovery in Databases, pages 229--248. MIT Press, Cambridge, MA, 1991.

[4854] Potter, C. and Klooster, S. and Steinbach, M. and Tan, P. N. and Kumar, V. and Shekhar, S. and Carvalho, C. Understanding Global Teleconnections of Climate to Regional Model Estimates of Amazon Ecosystem Carbon Fluxes. Global Change Biology, 10(5):693--703, 2004.

[4855] Potter, C. and Klooster, S. and Steinbach, M. and Tan, P. N. and Kumar, V. and Shekhar, S. and Myneni, R. and Nemani, R. Global Teleconnections of Ocean Climate to Terrestrial Carbon Flux. J. Geophysical Research, 108(D17), 2003.

[4856] Provost, F. J. and Fawcett, T. Analysis and Visualization of Classifier Performance: Comparison under Imprecise Class and Cost Distributions. KDD97, pages 43--48, Newport Beach, CA, 1997.

[4857] Pyle, D. Business Modeling and Data Mining. Morgan Kaufmann, San Francisco, CA, 2003.

[4858] Quinlan, J. R. C4.5: Programs for Machine Learning. Morgan-Kaufmann Publishers, San Mateo, CA, 1993.

[4859] Quinlan, J. R. Discovering rules by induction from large collection of examples. In Michie, D., editors, Expert Systems in the Micro Electronic Age. Edinburgh University Press, Edinburgh, UK, 1979.

[4860] Quinlan, J. R. Simplifying Decision Trees. Intl. J. Man-Machine Studies, 27:221--234, 1987.

[4861] Quinlan, J. R. and Rivest, R. L. Inferring Decision Trees Using the Minimum Description Length Principle. Information and Computation, 80(3):227--248, 1989.

[4862] Naren Ramakrishnan and Ananth Grama. Data Mining: From Serendipity to Science---Guest Editors' Introduction. IEEE Computer, 32(8):34-37, 1999.

[4863] Ramkumar, G. D and Ranka, S. and Tsur, S. Weighted Association Rules: Model and Algorithm. http://www.cs.ucla.edu/czdemo/tsur/, 1997.

[4864] Ramoni, M. and Sebastiani, P. Robust Bayes classifiers. Artificial Intelligence, 125:209--226, 2001.

[4865] van Rijsbergen, C. J. Information Retrieval. Butterworth-Heinemann, Newton, MA, 1978.

[4866] Roiger, R. and Geatz, M. Data Mining: A Tutorial Based Primer. Addison-Wesley, 2002.

[4867] Safavian, S. R. and Landgrebe, D. A Survey of Decision Tree Classifier Methodology. IEEE Trans. Systems, Man and Cybernetics, 22:660--674, 1998.

[4868] Sarawagi, S. and Thomas, S. and Agrawal, R. Integrating Mining with Relational Database Systems: Alternatives and Implications. SIGMOD98, pages 343--354, Seattle, WA, 1998.

[4869] Satou, K. and Shibayama, G. and Ono, T. and Yamamura, Y. and Furuichi,E. and Kuhara, S. and Takagi, T. Finding Association Rules on Heterogeneous Genome Data. Proc. of the Pacific Symp. on Biocomputing, pages 397--408, Hawaii, 1997.

[4870] Savasere, A. and Omiecinski, E. and Navathe, S. An efficient algorithm for mining association rules in large databases. Proc. of the 21st Int. Conf. on Very Large Databases (VLDB`95), pages 432-444, Zurich, Switzerland, 1995.

[4871] A. Savasere and E. Omiecinski and S. Navathe. Mining for Strong Negative Associations in a Large Database of Customer Transactions. ICDE98, pages 494--502, Orlando, Florida, 1998.

[4872] Schaffer, C. Overfitting avoidence as bias. Machine Learning, 10:153--178, 1993.

[4873] Schapire, R. E. The Boosting Approach to Machine Learning: An Overview. MSRI Workshop on Nonlinear Estimation and Classification, 2002.

[4874] Schölkopf, B. and Smola, A. J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, 2001.

[4875] Schuermann, J. and Doster, W. A decision-theoretic approach in hierarchical classifier design. Pattern Recognition, 17:359--369, 1984.

[4876] Advances in Distributed and Parallel Knowledge Discovery. AAAI Press, 2002.

[4877] Advances in Knowledge Discovery and Data Mining.. AAAI/MIT Press, 1996.

[4878] Rakesh Agrawal and Johannes Gehrke and Dimitrios Gunopulos and Prabhakar Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. In Laura M. Haas and Ashutosh Tiwary, editors, SIGMOD98, pages 94--105, Seattle, Washington, 1998. ACM Press.

[4879] Ming-Syan Chen and Jiawei Han and Philip S. Yu. Data Mining: An Overview from a Database Perspective. IEEE Transactions on Knowledge abd Data Engineering, 8(6):866-883, 1996.

[4880] Seno, M. and Karypis, G. LPMiner: An Algorithm for Finding Frequent Itemsets Using Length-Decreasing Support Constraint. ICDM01, pages 505--512, San Jose, CA, 2001.

[4881] Seno, M. and Karypis, G. SLPMiner: An Algorithm for Finding Frequent Sequential Patterns Using Length-Decreasing Support Constraint. ICDM02, pages 418--425, Maebashi City, Japan, 2002.

[4882] Shafer, J. C. and Agrawal, R. and Mehta, M. SPRINT: A Scalable Parallel Classifier for Data Mining. VLDB96, pages 544--555, Bombay, India, 1996.

[4883] Shintani, T. and Kitsuregawa, M. Hash based parallel algorithms for mining association rules. Proc of the 4th Intl. Conf. on Parallel and Distributed Info. Systems, pages 19--30, Miami Beach, FL, 1996.

[4884] Silberschatz, A. and Tuzhilin, A. What makes patterns interesting in knowledge discovery systems. IEEE Trans. on Knowledge and Data Engineering, 8(6):970--974, 1996.

[4885] Silverstein, C. and Brin, S. and Motwani, R. Beyond market baskets: Generalizing association rules to dependence rules. Data Mining and Knowledge Discovery, 2(1):39--68, 1998.

[4886] Simpson, E.-H. The Interpretation of Interaction in Contingency Tables. Journal of the Royal Statistical Society, B(13):238--241, 1951.

[4887] Singh, L. and Chen, B. and Haight, R. and Scheuermann, P. An Algorithm for Constrained Association Rule Mining in Semi-structured Data. PAKDD99, pages 148--158, Beijing, China, 1999.

[4888] Smyth, P. and Goodman, R. M. An Information Theoretic Approach to Rule Induction from Databases. IEEE Trans. on Knowledge and Data Engineering, 4(4):301--316, 1992.

[4889] Padhraic Smyth. Breaking out of the Black-Box: Research Challenges in Data Mining. DMKD01, 2001.

[4890] Padhraic Smyth and Daryl Pregibon and Christos Faloutsos. Data-driven evolution of data mining algorithms. Communications of the ACM, 45(8):33-37, 2002.

[4891] Srikant, R. and Agrawal, R. Mining Generalized Association Rules. VLDB95, pages 407--419, Zurich, Switzerland, 1995.

[4892] Srikant, R. and Agrawal, R. Mining Quantitative Association Rules in Large Relational Tables. SIGMOD96, pages 1--12, Montreal, Canada, 1996.

[4893] Srikant, R. and Agrawal, R. Mining Sequential Patterns: Generalizations and Performance Improvements. Proc. of the 5th Intl Conf. on Extending Database Technology (EDBT'96), pages 18--32, Avignon, France, 1996.

[4894] Srikant, R. and Vu, Q. and Agrawal, R. Mining Association Rules with Item Constraints. KDD97, pages 67--73, Newport Beach, CA, 1997.

[4895] Steinbach, M. and Tan, P. N. and Kumar, V. Support Envelopes: A Technique for Exploring the Structure of Association Patterns. KDD04, pages 296--305, Seattle, WA, 2004.

[4896] Steinbach, M. and Tan, P. N. and Xiong, H. and Kumar, V. Extending the Notion of Support. KDD04, pages 689--694, Seattle, WA, 2004.

[4897] Suzuki, E. Autonomous Discovery of Reliable Exception Rules. KDD97, pages 259--262, Newport Beach, CA, 1997.

[4898] Tan, P. N. and Kumar, V. Mining Association Patterns in Web Usage Data. Proc. of the Intl. Conf. on Advances in Infrastructure for e-Business, e-Education, e-Science and e-Medicine on the Internet, L'Aquila, Italy, 2002.

[4899] Tan, P. N. and Kumar, V. and Srivastava, J. Indirect Association: Mining Higher Order Dependencies in Data. PKDD00, pages 632--637, Lyon, France, 2000.

[4900] Tan, P. N. and Kumar, V. and Srivastava, J. Selecting the Right Interestingness Measure for Association Patterns. KDD02, pages 32--41, Edmonton, Canada, 2002.

[4901] Tan, P. N. and Steinbach, M. and Kumar, V. and Klooster, S. and Potter, C. and Torregrosa, A. Finding Spatio-Temporal Patterns in Earth Science Data. KDD 2001 Workshop on Temporal Data Mining, San Francisco, CA, 2001.

[4902] Tax, D. M. J. and Duin, R. P. W. Using Two-Class Classifiers for Multiclass Classification. Proc. of the 16th Intl. Conf. on Pattern Recognition (ICPR 2002), pages 124--127, Quebec, Canada, 2002.

[4903] Teng, W. G. and Hsieh, M. J. and Chen, M.-S. On the Mining of Substitution Rules for Statistically Dependent Items. ICDM02, pages 442--449, Maebashi City, Japan, 2002.

[4904] Toivonen, H and Klemettinen, M. and Ronkainen, P. and Hatonen, K. and Mannila, H. Pruning and Grouping Discovered Association Rules. ECML-95 Workshop on Statistics, Machine Learning and Knowledge Discovery in Databases, pages 47 -- 52, Heraklion, Greece, 1995.

[4905] Toivonen, H. Sampling Large Databases for Association Rules. VLDB96, pages 134--145, Bombay, India, 1996.

[4906] Tsur, S. and Ullman, J. and Abiteboul, S. and Clifton, C. and Motwani, R. and Nestorov, S. and Rosenthal, A. Query Flocks: A Generalization of Association Rule Mining. SIGMOD98, pages 1--12, Seattle, WA, 1998.

[4907] Tung, Anthony and Lu, H. J. and Han, Jiawei and Feng, Ling. Breaking the Barrier of Transactions: Mining Inter-Transaction Association Rules. KDD99, pages 297--301, San Diego, CA, 1999.

[4908] Utgoff, P. E. and Brodley, C. E. An incremental method for finding multivariate splits for decision trees. ICML90, pages 58--65, Austin, TX, 1990.

[4909] Vapnik, V. Statistical Learning Theory. John Wiley & Sons, New York, 1998.

[4910] Vapnik, V. The Nature of Statistical Learning Theory. Springer Verlag, New York, 1995.

[4911] Wang, H. and Zaniolo, C. CMP: A Fast Decision Tree Classifier Using Multivariate Predictions. ICDE00, pages 449--460, San Diego, CA, 2000.

[4912] Wang, K. and He, Y. and Han, J. Mining Frequent Itemsets Using Support Constraints. VLDB00, pages 43--52, Cairo, Egypt, 2000.

[4913] Wang, K. and Tay, S. H. and Liu, B. Interestingness-Based Interval Merger for Numeric Association Rules. KDD98, pages 121--128, New York, NY, 1998.

[4914] Wang, Q. R. and Suen, C. Y. Large tree classifier with heuristic search and global training. IEEE Trans. on Pattern Analysis and Machine Intelligence, 9(1):91--102, 1987.

[4915] Webb, A. R. Statistical Pattern Recognition. John Wiley & Sons, 2nd edition, 2002.

[4916] Webb, G. I. Discovering associations with numeric variables. KDD01, pages 383--388, San Francisco, CA, 2001.

[4917] Webb, G. I. Preliminary investigations into statistically valid exploratory rule discovery. Proc. of the Australasian Data Mining Workshop (AusDM03), Canberra, Australia, 2003.

[4918] Weiss, G. M. Mining with Rarity: A Unifying Framework. SIGKDD Explorations, 6(1):7--19, 2004.

[4919] Witten, I. H. and Frank, E. Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, 1999.

[4920] Wu, X. and Zhang, C. and Zhang, S. Mining Both Positive and Negative Association Rules. ACM Trans. on Information Systems, 22(3):381--405, 2004.

[4921] Xindong Wu and Philip S. Yu and Gregory Piatetsky-Shapiro. Data Mining: How Research Meets Practical Development?. Knowledge and Information Systems, 5(2):248-261, 2003.

[4922] Xiong, H. and He, X. and Ding, C. and Zhang, Y. and Kumar, V. and Holbrook, S. R. Identification of Functional Modules in Protein Complexes via Hyperclique Pattern Discovery. Proc. of the Pacific Symposium on Biocomputing, (PSB 2005), Maui, 2005.

[4923] Xiong, H. and Shekhar, S. and Tan, P. N. and Kumar, V. Exploiting a Support-based Upper Bound of Pearson's Correlation Coefficient for Efficiently Identifying Strongly Correlated Pairs. KDD04, pages 334-343, Seattle, WA, 2004.

[4924] Xiong, H. and Steinbach, M. and Tan, P. N. and Kumar, V. HICAP: Hierarchial Clustering with Pattern Preservation. SDM04, pages 279--290, Orlando, FL, 2004.

[4925] Xiong, H. and Tan, P. N. and Kumar, V. Mining Strong Affinity Association Patterns in Data Sets with Skewed Support Distribution. ICDM03, pages 387--394, Melbourne, FL, 2003.

[4926] Yan, X. and Han, J. gSpan: Graph-based Substructure Pattern Mining. ICDM02, pages 721--724, Maebashi City, Japan, 2002.

[4927] Yang, C. and Fayyad, U. M. and Bradley, P. S. Efficient discovery of error-tolerant frequent itemsets in high dimensions. KDD01, pages 194--203, San Francisco, CA, 2001.

[4928] Zadrozny, B. and Langford, J. C. and Abe, N. Cost-Sensitive Learning by Cost-Proportionate Example Weighting. ICDM03, pages 435--442, Melbourne, FL, 2003.

[4929] Zaki, M. J. Efficiently mining frequent trees in a forest. KDD02, pages 71--80, Edmonton, Canada, 2002.

[4930] Zaki, M. J. Generating Non-Redundant Association Rules. KDD00, pages 34--43, Boston, MA, 2000.

[4931] Zaki, M. J. Parallel and Distributed Association Mining: A Survey. IEEE Concurrency, special issue on Parallel Mechanisms for Data Mining, 7(4):14--25, 1999.

[4932] Zaki, M. J. and Orihara, M. Theoretical foundations of association rules. DMKD98, Seattle, WA, 1998.

[4933] Zaki, M. J. and Parthasarathy, S. and Ogihara, M. and Li, W. New Algorithms for Fast Discovery of Association Rules. KDD97, pages 283--286, Newport Beach, CA, 1997.

[4934] Zhang, H. and Padmanabhan, B. and Tuzhilin, A. On the Discovery of Significant Statistical Quantitative Rules. KDD04, pages 374--383, Seattle, WA, 2004.

[4935] Zhang, Z. and Lu, Y. and Zhang, B. An Effective Partioning-Combining Algorithm for Discovering Quantitative Association Rules. PAKDD97, Singapore, 1997.

[4936] Data Mining for Scientific and Engineering Applications. Kluwer Academic Publishers, 2001.

[4937] "C. Clifton and M. Kantarcioglu and J. Vaidya. Defining privacy for data mining. National Science Foundation Workshop on Next Generation Data Mining, pages 126--133, Baltimore, MD, 2002.

[4938] Large-Scale Parallel Data Mining. Springer, 2002.

[4939] Rakesh Agrawal and Ramakrishnan Srikant. Privacy-preserving data mining. SIGMOD00, pages 439--450, Dallas, Texas, 2000. ACM Press.

[4940] Mark S. Aldenderfer and Roger K. Blashfield. Cluster Analysis. Sage Publications, Los Angeles, 1985.

[4941] Michael R. Anderberg. Cluster Analysis for Applications. Academic Press, New York, 1973.

[4942] Phipps Arabie and Lawrence Hubert and G. De Soete. An overview of combinatorial data analysis. In P. Arabie and L. Hubert and G. De Soete, editors, Clustering and Classification, pages 188--217. World Scientific, Singapore, 1996.

[4943] G. Ball and D. Hall. A Clustering Technique for Summarizing Multivariate Data. Behavior Science, 12:153--155, 1967.

[4944] A. Banerjee and S. Merugu and I. S. Dhillon and J. Ghosh. Clustering with Bregman Divergences. In Michael W. Berry and Umeshwar Dayal and Chandrika Kamath and David Skillicorn, editors, SDM04, pages 234--245, Lake Buena Vista, FL, 2004.

[4945] Hans Hermann Bock and Edwin Diday. Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data (Studies in Classification, Data Analysis, and Knowledge Organization). Springer-Verlag Telos, 2000.

[4946] Ingwer Borg and Patrick Groenen. Modern Multidimensional Scaling---Theory and Applications. Springer-Verlag, 1997.

[4947] William G. Cochran. Sampling Techniques. John Wiley & Sons, 3rd edition, 1977.

[4948] James W. Demmel. Applied Numerical Linear Algebra. Society for Industrial & Applied Mathematics, 1997.

[4949] Pedro Domingos and Geoff Hulten. Mining high-speed data streams. KDD00, pages 71--80, Boston, Massachusetts, 2000. ACM Press.

[4950] Gaohua Gu, Feifang Hu and Huan Liu. Sampling and Its Application in Data Mining: A Survey. Technical report, TRA6/00, National University of Singapore, Singapore, 2000.

[4951] C. Giannella and J. Han and J. Pei and X. Yan and P. S. Yu. Mining Frequent Patterns in Data Streams at Multiple Time Granularities. In H. Kargupta and A. Joshi and K. Sivakumar and Y. Yesha, editors, Next Generation Data Mining, pages 191-212. AAAI/MIT, 2003.

[4952] D. J. Hand. Statistics and the Theory of Measurement. Journal of the Royal Statistical Society: Series A (Statistics in Society), 159(3):445-492, 1996.

[4953] Hillol Kargupta and Souptik Datta and Qi Wang and Krishnamoorthy Sivakumar. On the Privacy Preserving Properties of Random Data Perturbation Techniques. ICDM03, pages 99-106, Melbourne, Florida, 2003. IEEE Computer Society.

[4954] Daniel Kifer and Shai Ben-David and Johannes Gehrke. Detecting Change in Data Streams. VLDB04, pages 180-191, Toronto, Canada, 2004. Morgan Kaufmann.

[4955] David Krantz and R. Duncan Luce and Patrick Suppes and Amos Tversky. Foundations of Measurements: Volume 1: Additive and polynomial representations. Academic Press, New York, 1971.

[4956] Martin H. C. Law and Nan Zhang and Anil K. Jain. Nonlinear Manifold Learning for Data Streams.In Michael W. Berry and Umeshwar Dayal and Chandrika Kamath and David Skillicorn, editors, SDM04, Lake Buena Vista, Florida, 2004. SIAM.

[4957] B. W. Lindgren. Statistical Theory. CRC Press, 1993.

[4958] R. Duncan Luce and David Krantz and Patrick Suppes and Amos Tversky. Foundations of Measurements: Volume 3: Representation, Axiomatization, and Invariance. Academic Press, New York, 1990.

[4959] F. Olken and D. Rotem. Random Sampling from Databases---A Survey. Statistics & Computing, 5(1):25--42, 1995.

[4960] Jason Osborne. Notes on the Use of Data Transformations. Practical Assessment, Research & Evaluation, 28(6), 2002.

[4961] Christopher R. Palmer and Christos Faloutsos. Density biased sampling: An improved method for data mining and clustering. ACM SIGMOD Record, 29(2):82--92, 2000.

[4962] Spiros Papadimitriou and Anthony Brockwell and Christos Faloutsos. Adaptive, unsupervised stream mining. VLDB Journal, 13(3):222-239, 2004.

[4963] Foster J. Provost and David Jensen and Tim Oates. Efficient Progressive Sampling. KDD99, pages 23--32, 1999.

[4964] Stanley Smith Stevens. Measurement. In Gary Michael Maranell, editors, Scaling: A Sourcebook for Behavioral Scientists, pages 22--41. Aldine Publishing Co., Chicago, 1974.

[4965] Stanley Smith Stevens. On the Theory of Scales of Measurement. Science, 103(2684):677--680, 1946.

[4966] Patrick Suppes and David Krantz and R. Duncan Luce and Amos Tversky. Foundations of Measurements: Volume 2: Geometrical, Threshold, and Probabilistic Representations. Academic Press, New York, 1989.

[4967] Hannu Toivonen. Sampling Large Databases for Association Rules. In T. M. Vijayaraman and Alejandro P. Buchmann and C. Mohan and Nandlal L. Sarda, editors, VLDB96, pages 134--145, 1996. Morgan Kaufman.

[4968] John W. Tukey. On the Comparative Anatomy of Transformations. Annals of Mathematical Statistics, 28(3):602--632, 1957.

[4969] Vassilios S. Verykios and Elisa Bertino and Igor Nai Fovino and Loredana Parasiliti Provenza and Yucel Saygin and Yannis Theodoridis. State-of-the-art in privacy preserving data mining. SIGMOD Record, 33(1):50--57, 2004.

[4970] Richard Y. Wang and Mostapha Ziad and Yang W. Lee and Y. Richard Wang. Data Quality of The Kluwer International Series on Advances in Database Systems, Volume 23. Kluwer Academic Publishers, 2001.

[4971] Mohammed Javeed Zaki and Srinivasan Parthasarathy and Wei Li and Mitsunori Ogihara. Evaluation of Sampling for Data Mining of Association Rules. Technical report, TR617, Rensselaer Polytechnic Institute, 1996.

[4972] Feature Extraction, Construction and Selection: A Data Mining Perspective of Kluwer International Series in Engineering and Computer Science, 453. Kluwer Academic Publishers, 1998.

[4973] MIT Total Data Quality Management Program. web.mit.edu/tdqm/www/index.shtml, 2003.

[4974] Mihael Ankerst and Markus M. Breunig and Hans-Peter Kriegel and Jörg Sander. OPTICS: Ordering Points To Identify the Clustering Structure. In Alex Delis and Christos Faloutsos and Shahram Ghandeharizadeh, editors, SIGMOD99, pages 49--60, Philadelphia, Pennsylvania, 1999. ACM Press.

[4975] Daniel Barbará. Requirements for clustering data streams. SIGKDD Explorations Newsletter, 3(2):23--27, 2002.

[4976] Pavel Berkhin. Survey Of Clustering Data Mining Techniques. Technical report, Accrue Software, San Jose, CA, 2002.

[4977] J. Bilmes. A Gentle Tutorial on the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models. Technical report, ICSI-TR-97-021, University of California at Berkeley, 1997.

[4978] C. M. Bishop and M. Svensen and C. K. I. Williams. GTM: A principled alternative to the self-organizing map. In C. von der Malsburg and W. von Seelen and J. C. Vorbruggen and B. Sendhoff, editors, Artificial Neural Networks---ICANN96. Intl. Conf, Proc., pages 165-170. Springer-Verlag, Berlin, Germany, 1996.

[4979] Avrim Blum and Pat Langley. Selection of Relevant Features and Examples in Machine Learning. Artificial Intelligence, 97(1--2):245--271, 1997.

[4980] Daniel Boley. Principal Direction Divisive Partitioning. Data Mining and Knowledge Discovery, 2(4):325-344, 1998.

[4981] Paul S. Bradley and Usama M. Fayyad. Refining Initial Points for K-Means Clustering. In Jude W. Shavlik, editors, ICML98, pages 91--99, Madison, WI, 1998. Morgan Kaufmann Publishers Inc.

[4982] Paul S. Bradley and Usama M. Fayyad and Cory Reina. Scaling Clustering Algorithms to Large Databases. In Rakesh Agrawal and Paul Stolorz and Gregory Piatetsky-Shapiro, editors, KDD98, pages 9--15, New York City, 1998. AAAI Press.

[4983] Peter Cheeseman and James Kelly and Matthew Self and John Stutz and Will Taylor and Don Freeman. AutoClass: a Bayesian classification system. Readings in knowledge acquisition and learning: automating the construction and improvement of expert systems, pages 431--441. Morgan Kaufmann Publishers Inc., 1993.

[4984] James Dougherty and Ron Kohavi and Mehran Sahami. Supervised and Unsupervised Discretization of Continuous Features. ICML95, pages 194--202, 1995.

[4985] Duda, Robert O. and Hart, Peter E. and Stork, David G. Pattern Classification. John Wiley & Sons, Inc., New York, Second edition, 2001.

[4986] Tapio Elomaa and Juho Rousu. General and Efficient Multisplitting of Numerical Attributes. Machine Learning, 36(3):201--244, 1999.

[4987] Levent Ertöz and Michael Steinbach and Vipin Kumar. A New Shared Nearest Neighbor Clustering Algorithm and its Applications. Workshop on Clustering High Dimensional Data and its Applications, Proc. of Text Mine'01, First SIAM Intl. Conf. on Data Mining, Chicago, IL, USA, 2001.

[4988] Levent Ertöz and Michael Steinbach and Vipin Kumar. Finding Clusters of Different Sizes, Shapes, and Densities in Noisy, High Dimensional Data. SDM03, San Francisco, 2003. SIAM.

[4989] Martin Ester and Hans-Peter Kriegel and Jörg Sander and Michael Wimmer and Xiaowei Xu. Incremental Clustering for Mining in a Data Warehousing Environment. In Ashish Gupta and Oded Shmueli and Jennifer Widom, editors, VLDB98, pages 323--333, New York City, 1998. Morgan Kaufmann.

[4990] Martin Ester and Hans-Peter Kriegel and Jorg Sander and Xiaowei Xu. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Evangelos Simoudi and Jiawei Han and Usama M. Fayyad, editors, KDD96, pages 226--231, Portland, Oregon, 1996. AAAI Press.

[4991] Brian S. Everitt and Sabine Landau and Morven Leese. Cluster Analysis. Arnold Publishers, London, Fourth edition, 2001.

[4992] U. M. Fayyad and K. B. Irani. Multi-interval discretization of continuousvalued attributes for classification learning. Proc. 13th Int. Joint Conf. on Artificial Intelligence, pages 1022--1027, 1993. Morgan Kaufman.

[4993] Douglas Fisher. Iterative Optimization and Simplification of Hierarchical Clusterings. Journal of Artificial Intelligence Research, 4:147--179, 1996.

[4994] Douglas Fisher and Pat Langley. Conceptual clustering and its relation to numerical taxonomy. Artificial Intelligence and Statistics, :77--116, 1986.

[4995] Chris Fraley and Adrian E. Raftery. How Many Clusters? Which Clustering Method? Answers Via Model-Based Cluster Analysis. The Computer Journal, 41(8):578--588, 1998.

[4996] Venkatesh Ganti and Johannes Gehrke and Raghu Ramakrishnan. CACTUS--Clustering Categorical Data Using Summaries. KDD99, pages 73--83, 1999. ACM Press.

[4997] Allen Gersho and Robert M. Gray. Vector Quantization and Signal Compression, volume 159 of Kluwer International Series in Engineering and Computer Science. Kluwer Academic Publishers, 1992.

[4998] Joydeep Ghosh. Scalable Clustering Methods for Data Mining. In Nong Ye, editors, Handbook of Data Mining, pages 247--277. Lawrence Ealbaum Assoc, 2003.

[4999] David Gibson and Jon M. Kleinberg and Prabhakar Raghavan. Clustering Categorical Data: An Approach Based on Dynamical Systems. VLDB Journal, 8(3--4):222--236, 2000.

[5000] K. C. Gowda and G. Krishna. Agglomerative Clustering Using the Concept of Mutual Nearest Neighborhood. Pattern Recognition, 10(2):105--112, 1978.

[5001] Sudipto Guha and Adam Meyerson and Nina Mishra and Rajeev Motwani and Liadan O'Callaghan. Clustering Data Streams: Theory and Practice. IEEE Transactions on Knowledge and Data Engineering, 15(3):515--528, 2003.

[5002] Sudipto Guha and Rajeev Rastogi and Kyuseok Shim. CURE: An Efficient Clustering Algorithm for Large Databases. In Laura M. Haas and Ashutosh Tiwary, editors, SIGMOD98, pages 73--84, 1998. ACM Press.

[5003] Sudipto Guha and Rajeev Rastogi and Kyuseok Shim. ROCK: A Robust Clustering Algorithm for Categorical Attributes. In Masaru Kitsuregawa and Leszek Maciaszek and Mike Papazoglou and Calton Pu, editors, ICDE99, pages 512--521, 1999. IEEE Computer Society.

[5004] Maria Halkidi and Yannis Batistakis and Michalis Vazirgiannis. Cluster validity methods: part I. SIGMOD Record (ACM Special Interest Group on Management of Data), 31(2):40--45, 2002.

[5005] Maria Halkidi and Yannis Batistakis and Michalis Vazirgiannis. Clustering validity checking methods: part II. SIGMOD Record (ACM Special Interest Group on Management of Data), 31(3):19--27, 2002.

[5006] Greg Hamerly and Charles Elkan. Alternatives to the k-means algorithm that find better clusterings. CIKM02, pages 600--607, McLean, Virginia, 2002. ACM Press.

[5007] Jiawei Han and Micheline Kamber and Anthony Tung. Spatial Clustering Methods in Data Mining: A review. In Harvey J. Miller and Jiawei Han, editors, Geographic Data Mining and Knowledge Discovery, pages 188--217. Taylor and Francis, London, 2001.

[5008] John Hartigan. Clustering Algorithms. Wiley, New York, 1975.

[5009] Alexander Hinneburg and Daniel A. Keim. Optimal Grid-Clustering: Towards Breaking the Curse of Dimensionality in High-Dimensional Clustering. In M. P. Atkinson and M. E. Orlowska and P. Valduriez and S. B. Zdonik and M. L. Brodie, editors, VLDB99, pages 506--517, Edinburgh, Scotland, UK, 1999. Morgan Kaufmann.

[5010] Alexander Hinneburg and Daniel. A. Keim. An Efficient Approach to Clustering in Large Multimedia Databases with Noise. In Rakesh Agrawal and Paul Stolorz, editors, KDD98, pages 58--65, New York City, 1998. AAAI Press.

[5011] F. Hussain and H. Liu and C. L. Tan and M. Dash. TRC6/99: Discretization: an enabling technique. Technical report, National University of Singapore, Singapore, 1999.

[5012] Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data of Prentice Hall Advanced Reference Series. Prentice Hall, 1988. Book available online at http://www.cse.msu.edu/ : jain/Clustering_Jain_Dubes.pdf.

[5013] Anil K. Jain and M. Narasimha Murty and Patrick J. Flynn. Data clustering: A review. ACM Computing Surveys, 31(3):264--323, 1999.

[5014] Nicolas Jardine and Robin Sibson. Mathematical Taxonomy. Wiley, New York, 1971.

[5015] R. A. Jarvis and E. A. Patrick. Clustering Using a Similarity Measure Based on Shared Nearest Neighbors. IEEE Transactions on Computers, C-22(11):1025-1034, 1973.

[5016] I. T. Jolliffe. Principal Component Analysis. Springer Verlag, 2nd edition, 2002.

[5017] Istvan Jonyer and Diane J. Cook and Lawrence B. Holder. Graph-based hierarchical conceptual clustering. Journal of Machine Learning Research, 2:19--43, 2002.

[5018] Karin Kailing and Hans-Peter Kriegel and Peer Kröger. Density-Connected Subspace Clustering for High-Dimensional Data. In Michael W. Berry and Umeshwar Dayal and Chandrika Kamath and David B. Skillicorn, editors, SDM04, pages 428--439, Lake Buena Vista, Florida, 2004. SIAM.

[5019] George Karypis and Eui-Hong Han and Vipin Kumar. CHAMELEON: A Hierarchical Clustering Algorithm Using Dynamic Modeling. IEEE Computer, 32(8):68--75, 1999.

[5020] George Karypis and Eui-Hong Han and Vipin Kumar. Multilevel Refinement for Hierarchical Clustering. Technical report, TR 99-020, University of Minnesota, Minneapolis, MN, 1999.

[5021] George Karypis and Vipin Kumar. Multilevel k-way Partitioning Scheme for Irregular Graphs. Journal of Parallel and Distributed Computing, 48(1):96-129, 1998.

[5022] Leonard Kaufman and Peter J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster Analysis of Wiley Series in Probability and Statistics. John Wiley and Sons, New York, 1990.

[5023] Jon M. Kleinberg. An Impossibility Theorem for Clustering. Proc. of the 16th Annual Conf. on Neural Information Processing Systems, 2002.

[5024] Ron Kohavi and George H. John. Wrappers for Feature Subset Selection. Artificial Intelligence, 97(1--2):273--324, 1997.

[5025] Teuvo Kohonen and Thomas S. Huang and Manfred R. Schroeder. Self-Organizing Maps. Springer-Verlag, 2000.

[5026] Joseph B. Kruskal and Eric M. Uslaner. Multidimensional Scaling. Sage Publications, 1978.

[5027] Bjornar Larsen and Chinatsu Aone. Fast and Effective Text Mining Using Linear-Time Document Clustering. KDD99, pages 16--22, San Diego, California, 1999. ACM Press.

[5028] H. Liu and H. Motoda and L. Yu. Feature Extraction, Selection, and Construction. In Nong Ye, editors, The Handbook of Data Mining, pages 22--41. Lawrence Erlbaum Associates, Inc., Mahwah, NJ, 2003.

[5029] Huan Liu and Hiroshi Motoda. Feature Selection for Knowledge Discovery and Data Mining of Kluwer International Series in Engineering and Computer Science, 454. Kluwer Academic Publishers, 1998.

[5030] J. MacQueen. Some methods for classification and analysis of multivariate observations. In Le Cam, L. M. and Neyman, J., editors, Proc. of the 5th Berkeley Symp. on Mathematical Statistics and Probability, pages 281--297, 1967. University of California Press.

[5031] Michalski, R. S. and Stepp, R. E. Automated Construction of Classifications: Conceptual Clustering Versus Numerical Taxonomy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 5(4):396--409, 1983.

[5032] Glen W. Milligan. Clustering Validation: Results and Implications for Applied Analyses. In P. Arabie and L. Hubert and G. De Soete, editors, Clustering and Classification, pages 345--375. World Scientific, Singapore, 1996.

[5033] Boris Mirkin. Mathematical Classification and Clustering, volume 11 of Nonconvex Optimization and Its Applications. Kluwer Academic Publishers, 1996.

[5034] Nina Mishra and Dana Ron and Ram Swaminathan. A New Conceptual Clustering Framework. Machine Learning Journal, 56(1--3):115--151, 2004.

[5035] Luis Carlos Molina and Lluis Belanche and Angela Nebot. Feature Selection Algorithms: A Survey and Experimental Evaluation. ICDM02, 2002.

[5036] Fionn Murtagh. Clustering massive data sets. In J. Abello and P. M. Pardalos and M. G. C. Reisende, editors, Handbook of Massive Data Sets. Kluwer, 2000.

[5037] Fionn Murtagh. Multidimensional Clustering Algorithms. Physica-Verlag, Heidelberg and Vienna, 1985.

[5038] Harsha Nagesh and Sanjay Goil and Alok Choudhary. Parallel Algorithms for Clustering High-Dimensional Large-Scale Datasets. In Robert L. Grossman and Chandrika Kamath and Philip Kegelmeyer and Vipin Kumar and Raju Namburu, editors, Data Mining for Scientific and Engineering Applications, pages 335--356. Kluwer Academic Publishers, Dordrecht, Netherlands, 2001.

[5039] Raymond T. Ng and Jiawei Han. CLARANS: A Method for Clustering Objects for Spatial Data Mining. IEEE Transactions on Knowledge and Data Engineering, 14(5):1003--1016, 2002.

[5040] Dan Pelleg and Andrew W. Moore. X -means: Extending K -means with Efficient Estimation of the Number of Clusters. ICML00, pages 727--734, 2000. Morgan Kaufmann, San Francisco, CA.

[5041] Markus Peters and Mohammed J. Zaki. CLICKS: Clustering Categorical Data using K-partite Maximal Cliques. ICDE05, Tokyo, Japan, 2005.

[5042] Thomas C. Redman. Data Quality: The Field Guide. Digital Press, 2001.

[5043] Charles Romesburg. Cluster Analysis for Researchers. Life Time Learning, Belmont, CA, 1984.

[5044] J. Sander and M. Ester and H.-P. Kriegel and X. Xu. Density-Based Clustering in Spatial Databases: The Algorithm GDBSCAN and its Applications. Data Mining and Knowledge Discovery, 2(2):169--194, 1998.

[5045] Sergio M. Savaresi and Daniel Boley. A comparative analysis on the bisecting K-means and the PDDP clustering algorithms. Intelligent Data Analysis, 8(4):345-362, 2004.

[5046] Erich Schikuta and Martin Erhart. The BANG-Clustering System: Grid-Based Data Analysis. In Xiaohui Liu and Paul R. Cohen and Michael R. Berthold, editors, Advances in Intelligent Data Analysis, Reasoning about Data, Second Intl. Symposium, IDA-97, London in Lecture Notes in Computer Science, pages 513--524, 1997. Springer.

[5047] Gholamhosein Sheikholeslami and Surojit Chatterjee and Aidong Zhang. Wavecluster: A multi-resolution clustering approach for very large spatial databases. In Ashish Gupta and Oded Shmueli and Jennifer Widom, editors, VLDB98, pages 428--439, New York City, 1998. Morgan Kaufmann.

[5048] Sneath, Peter H. A. and Robert R. Sokal. Numerical Taxonomy. Freeman, San Francisco, 1971.

[5049] Helmuth Späth. Cluster Analysis Algorithms for Data Reduction and Classification of Objects, volume 4 of Computers and Their Application. Ellis Horwood Publishers, Chichester, 1980. ISBN 0-85312-141-9.

[5050] Ramakrishnan Srikant and Rakesh Agrawal. Mining Quantitative Association Rules in Large Relational Tables. In H. V. Jagadish and Inderpal Singh Mumick, editors, SIGMOD96, pages 1--12, Montreal, Quebec, Canada, 1996.

[5051] Michael Steinbach and George Karypis and Vipin Kumar. A Comparison of Document Clustering Techniques. Proc. of KDD Workshop on Text Mining, Proc. of the 6th Intl. Conf. on Knowledge Discovery and Data Mining, Boston, MA, 2000.

[5052] Robert E. Stepp and Ryszard S. Michalski. Conceptual clustering of structured objects: A goal-oriented approach. Artificial Intelligence, 28(1):43--69, 1986.

[5053] Alexander Strehl and Joydeep Ghosh. A Scalable Approach to Balanced, High-dimensional Clustering of Market-Baskets. Proc. of the 7th Intl. Conf. on High Performance Computing (HiPC 2000) in Lecture Notes in Computer Science, pages 525--536, Bangalore, India, 2000. Springer.

[5054] Charles T. Zahn. Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters. IEEE Transactions on Computers, C-20(1):68-86, 1971.

[5055] Tian Zhang and Raghu Ramakrishnan and Miron Livny. BIRCH: an efficient data clustering method for very large databases. In H. V. Jagadish and Inderpal Singh Mumick, editors, SIGMOD96, pages 103--114, Montreal, Quebec, Canada, 1996. ACM Press.

[5056] CLUTO 2.1.1: Software for Clustering High-Dimensional Datasets. /www.cs.umn.edu/ : karypis, 2003.

[5057] P. S. Bradley and U. M. Fayyad and C. Reina. Scaling EM (Expectation Maximization) Clustering to Large Databases. Technical report, MSR-TR-98-35, Microsoft Research, 1999.

[5058] D. A. Burn. Designing Effective Statistical Graphs. In C. R. Rao, editors, Handbook of Statistics 9. Elsevier/North-Holland, Amsterdam, The Netherlands, 1993.

[5059] Inderjit S. Dhillon and Yuqiang Guan and J. Kogan. Iterative Clustering of High Dimensional Text Data Augmented by Local Search. ICDM02, pages 131-138, 2002. IEEE Computer Society.

[5060] Inderjit S. Dhillon and Dharmendra S. Modha. Concept Decompositions for Large Sparse Text Data Using Clustering. Machine Learning, 42(1/2):143-175, 2001.

[5061] Michael Friendly. Gallery of Data Visualization. http://www.math.yorku.ca/SCS/Gallery/, 2005.

[5062] Eui-Hong Han and George Karypis and Vipin Kumar and Bamshad Mobasher. Hypergraph Based Clustering in High-Dimensional Data Sets: A Summary of Results. IEEE Data Eng. Bulletin, 21(1):15-22, 1998.

[5063] Konstantinos Kalpakis and Dhiral Gada and Vasundhara Puttagunta. Distance Measures for Effective Clustering of ARIMA Time-Series. ICDM01, pages 273-280, 2001. IEEE Computer Society.

[5064] Eamonn J. Keogh and Michael J. Pazzani. Scaling up dynamic time warping for datamining applications. Proc. of the 10th Intl. Conf. on Knowledge Discovery and Data Mining, pages 285-289, 2000.

[5065] Robert Spence. Information Visualization. ACM Press, New York, 2000.

[5066] Michael Steinbach and Pang-Ning Tan and Vipin Kumar and Steven Klooster and Christopher Potter. Discovery of climate indices using clustering. KDD '03: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 446--455, New York, NY, USA, 2003. ACM Press.

[5067] Edward R. Tufte. The Visual Display of Quantitative Information. Graphics Press, Cheshire, CT, 1986.

[5068] John W. Tukey. Exploratory data analysis. Addison-Wesley, 1977.

[5069] Velleman, Paul and Hoaglin, David. The ABC's of EDA: Applications, Basics, and Computing of Exploratory Data Analysis. Duxbury, 1981.

[5070] Bin Zhang and Meichun Hsu and Umeshwar Dayal. K-Harmonic Means---A Data Clustering Algorithm. Technical report, HPL-1999-124, Hewlett Packard Laboratories, 1999.

[5071] Ying Zhao and George Karypis. Empirical and theoretical comparisons of selected criterion functions for document clustering. Machine Learning, 55(3):311--331, 2004.

[5072] Information Visualization in Data Mining and Knowledge Discovery. Morgan Kaufmann Publishers, San Francisco, CA, 2001.

[5073] Mathematica 5.1. Wolfram Research, Inc.. http://www.wolfram.com/, 2005.

[5074] MATLAB 7.0. The MathWorks, Inc.. http://www.mathworks.com, 2005.

[5075] Microsoft Excel 2003. Microsoft, Inc.. http://www.microsoft.com/, 2003.

[4152] Bovas Abraham and Alice Chuang. Outlier Detection and Time Series Modeling. Technometrics, 31(2):241--248, 1989.

[4154] Agarwal, R. C. and Aggarwal, C. C. and Prasad, V. V. V. A Tree Projection Algorithm for Generation of Frequent Itemsets. Journal of Parallel and Distributed Computing (Special Issue on High Performance Data Mining), 61(3):350--371, 2001.

[4154] Agarwal, R. C. and Aggarwal, C. C. and Prasad, V. V. V. A Tree Projection Algorithm for Generation of Frequent Itemsets. Journal of Parallel and Distributed Computing (Special Issue on High Performance Data Mining), 61(3):350--371, 2001.

[4651] Agarwal, R. C. and Shafer, J. C. Parallel Mining of Association Rules. IEEE Transactions on Knowledge and Data Engineering, 8(6):962--969, 1998.

[4652] Aggarwal, C. C. and Sun, Z. and Yu, P. S. Online Generation of Profile Association Rules. KDD98, pages 129--133, New York, NY, 1996.

[4653] Aggarwal, C. C. and Yu, P. S. Mining Associations with the Collective Strength Approach. IEEE Trans. on Knowledge and Data Engineering, 13(6):863--873, 2001.

[4654] Aggarwal, C. C. and Yu, P. S. Mining Large Itemsets for Association Rules. Data Engineering Bulletin, 21(1):23--31, 1998.

[4159] Charu C. Aggarwal and Philip S. Yu. Outlier detection for high dimensional data. SIGMOD01, pages 37--46, 2001. ACM Press.

[4629] Agrawal, R. and Imielinski, T. and Swami, A. Database mining: A performance perspective. IEEE Transactions on Knowledge and Data Engineering, 5:914--925, 1993.

[4655] Agrawal, R. and Imielinski, T. and Swami, A. Mining association rules between sets of items in large databases. Proc. ACM SIGMOD Intl. Conf. Management of Data, pages 207--216, Washington, DC, 1993.

[4656] Agrawal, R. and Srikant, R. Mining Sequential Patterns. Proc. of Intl. Conf. on Data Engineering, pages 3--14, Taipei, Taiwan, 1995.

[4657] Aha, D. W. A study of instance-based algorithms for supervised learning tasks: mathematical, empirical, and psychological evaluations. PhD thesis, University of California, Irvine, 1990.

[4658] Ali, K. and Manganaris, S. and Srikant, R. Partial Classification using Association Rules. KDD97, pages 115--118, Newport Beach, CA, 1997.

[4659] Alsabti, K. and Ranka, S. and Singh, V. CLOUDS: A Decision Tree Classifier for Large Datasets. KDD98, pages 2--8, New York, NY, 1998.

[4509] T. W. Anderson. An Introduction to Multivariate Statistical Analysis. Wiley, 2nd edition, 2003.

[4510] Andrews, R. and Diederich, J. and Tickle, A. A Survey and Critique of Techniques For Extracting Rules From Trained Artificial Neural Networks. Knowledge Based Systems, 8(6):373--389, 1995.

[4660] Aumann, Y. and Lindell, Y. A Statistical Theory for Quantitative Association Rules. KDD99, pages 261--270, San Diego, CA, 1999.

[4169] Vic Barnett and Toby Lewis. Outliers in Statistical Data of Wiley Series in Probability and Statistics. John Wiley & Sons, 3rd edition, 1994.

[4170] R. J. Beckman and R. D. Cook. `Outlier..........s'. Technometrics, 25(2):119--149, 1983.

[4171] R. J. Beckman and R. D. Cook. [`Outlier..........s']: Response. Technometrics, 25(2):161--163, 1983.

[5076] E. F. Codd and S. B. Codd and C. T. Smalley. Providing OLAP (On-line Analytical Processing) to User- Analysts: An IT Mandate. White Paper, E.F. Codd and Associates, 1993.

[5077] Jim Gray and Surajit Chaudhuri and Adam Bosworth and Andrew Layman and Don Reichart and Murali Venkatrao and Frank Pellow and Hamid Pirahesh. Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals. Journal Data Mining and Knowledge Discovery, 1(1):29--53, 1997.

[4174] Frank Grubbs. Procedures for Testing Outlying Observations. Annal of Mathematical Statistics, 21(1):27--58, 1950.

[4175] Douglas M. Hawkins. Identification of Outliers of Monographs on Applied Probability and Statistics. Chapman & Hall, 1980.

[4176] Douglas M. Hawkins. `[Outlier..........s]': Discussion. Technometrics, 25(2):155--156, 1983.

[4177] Victoria J. Hodge and Jim Austin. A Survey of Outlier Detection Methodologies. Artificial Intelligence Review, 22:85--126, 2004.

[5078] Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems. McGraw-Hill, 3rd edition, 2002.

[5079] Arie Shoshani. OLAP and statistical databases: similarities and differences. Proc. of the Sixteenth ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems, pages 185--196, 1997. ACM Press.

[5080] Zhong, N. and Yao, Y. Y. and Ohsuga, S. Peculiarity Oriented Multi-database Mining. PKDD99, pages 136--146, Prague, Czech Republic, 1999.

[5081] R: A language and environment for statistical computing and graphics. The R Project for Statistical Computing. http://www.r-project.org/, 2005.

[4679] Allwein, E. L. and Schapire, R. E. and Singer, Y. Reducing Multiclass to Binary: A Unifying Approach to Margin Classifiers. Journal of Machine Learning Research, 1:113--141, 2000.

[4680] Antonie, M-L. and Zaďane, O. R. Mining Positive and Negative Association Rules: An Approach for Confined Rules. PKDD04, pages 27--38, Pisa, Italy, 2004.

[4184] Peter J. Rousseeuw and Annick M. Leroy. Robust Regression and Outlier Detection of Wiley Series in Probability and Statistics. John Wiley & Sons, 2003.

[5082] S-PLUS. Insightful Corporation. http://www.insightful.com, 2005.

[5083] SAS: Statistical Analysis System. SAS Institute Inc.. http://www.sas.com/, 2005.

[4683] Ayres, J. and Flannick, J. and Gehrke, J. and Yiu, T. Sequential Pattern mining using a bitmap representation. KDD02, pages 429-435, Edmonton, Canada, 2002.

[4684] Barbará, D. and Couto, J. and Jajodia, S. and Wu, N. ADAM: A Testbed for Exploring the Use of Data Mining in Intrusion Detection. SIGMOD Record, 30(4):15--24, 2001.

[5084] SPSS: Statistical Package for the Social Sciences. SPSS, Inc.. http://www.spss.com/, 2005.

[4190] Vic Barnett. The Study of Outliers: Purpose and Model. Applied Statistics, 27(3):242--250, 1978.

[4685] Bay, S. D. and Pazzani, M. Detecting Group Differences: Mining Contrast Sets. Data Mining and Knowledge Discovery, 5(3):213--246, 2001.

[4192] Stephen D. Bay and Mark Schwabacher. Mining distance-based outliers in near linear time with randomization and a simple pruning rule. KDD03, pages 29--38, 2003. ACM Press.

[4686] Bayardo, R. Efficiently Mining Long Patterns from Databases. SIGMOD98, pages 85--93, Seattle, WA, 1998.

[4687] Bayardo, R. and Agrawal, R. Mining the Most Interesting Rules. KDD99, pages 145--153, San Diego, CA, 1999.

[4647] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Technical report, TR 2002-01, Department of Computer Science and Statistics, University of Chicago, 2002.

[4688] Benjamini, Y. and Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal Royal Statistical Society B, 57(1):289--300, 1995.

[4197] Markus M. Breunig and Hans-Peter Kriegel and Raymond T. Ng and J Sander. LOF: Identifying density-based local outliers. SIGMOD00, pages 93--104, 2000. ACM Press.

[4198] Markus M. Breunig and Hans-Peter Kriegel and Raymond T. Ng and J. Sander. OPTICS-OF: Identifying Local Outliers. Proceedings of the Third European Conference on Principles of Data Mining and Knowledge Discovery, pages 262--270, 1999. Springer-Verlag.

[4632] Miguel A. Carreira-Perpinan. A Review of Dimension Reduction Techniques. Technical report, CS--96--09, Dept. of Computer Science, University of Sheffield, 1997.

[4200] Amitabh Chaudhary and A. S. Szalay and A. W. Moore. Very fast outlier detection in large multidimensional data sets. Proc. ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery (DMKD), 2002.

[4201] Chung Chen and Lon-Mu Liu. Joint Estimation of Model Parameters and Outlier Effects in Time Series. Journal of the American Statistical Association, 88(421):284-297, 1993.

[4202] Laurie Davies and Ursula Gather. The Identification of Multiple Outliers. Journal of the American Statistical Association, 88(423):782--792, 1993.

[4662] James W. Demmel. Applied Numerical Linear Algebra. SIAM Press, 1997.

[4663] Donoho, David L. and Grimes, Carrie. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. PNAS, 100(10):5591-5596, 2003.

[4205] John Dunagan and Santosh Vempala. Optimal outlier removal in high-dimensional spaces. Journal of Computer and System Sciences, Special Issue on STOC 2001, 68(2):335--373, 2004.

[4206] Eleazar Eskin. Anomaly Detection over Noisy Data using Learned Probability Distributions. ICML00, pages 255-262, 2000.

[4207] Eleazer Eskin and Andrew Arnold and Michael Prerau and Leonid Portnoy and Sal J. Stolfo. A geometric framework for unsupervised anomaly detection. Applications of Data Mining in Computer Security, pages 78--100, 2002. Kluwer Academics.

[4664] Christos Faloutsos and King-Ip Lin. FastMap: A Fast Algorithm for Indexing, Data-Mining and Visualization of Traditional and Multimedia Datasets. In Michael J. Carey and Donovan A. Schneider, editors, Proc. of the 1995 ACM SIGMOD Intl. Conf. on Management of Data, pages 163--174, San Jose, California, 1995.

[4665] Imola K. Fodor. A survey of dimension reduction techniques. Technical Report, UCRL-ID-148494, LLNL, 2002.

[4210] A. J. Fox. Outliers in Time Series. Journal of the Royal Statistical Society. Series B (Methodological), 34(3):350--363, 1972.

[4211] Ghosh, A. and Schwartzbard, A. A Study in Using Neural Networks for Anomaly and Misuse Detection. 8th USENIX Security Symposium, 1999.

[4212] R. Gnanadesikan and J. R. Kettenring. Robust Estimates, Residuals, and Outlier Detection with Multiresponse Data. Biometrics, 28(1):81--124, 1972.

[4666] Gene H. Golub and Van Loan, Charles F. Matrix Computations. Johns Hopkins University Press, 3rd edition, 1996.

[4214] J. Hardin and D. M. Rocke. Outlier Detection in the Multiple Cluster Setting using the Minimum Covariance Determinant Estimator. Computational Statistics and Data Analysis, 44:625--638, 2004.

[4215] Simon Hawkins and Hongxing He and Graham J. Williams and Rohan A. Baxter. Outlier Detection Using Replicator Neural Networks. DaWaK 2000: Proc. of the 4th Intnl. Conf. on Data Warehousing and Knowledge Discovery, pages 170--180, 2002. Springer-Verlag.

[4216] H. V. Jagadish and Nick Koudas and S. Muthukrishnan. Mining Deviants in a Time Series Database. VLDB99, pages 102-113, 1999.

[4217] Theodore Johnson and Ivy Kwok and Raymond T. Ng. Fast Computation of 2-Dimensional Depth Contours. KDD98, pages 224-228, 1998.

[4668] I. T. Jolliffe. Principal Component Analysis. Springer-Verlag, 2nd edition, 2002.

[4219] Mahesh V. Joshi. On Evaluating Performance of Classifiers for Rare Classes. ICDM02, pages 641-644, 2002.

[4220] Mahesh V. Joshi and Ramesh C. Agarwal and Vipin Kumar. Mining needle in a haystack: Classifying rare classes via two-phase rule induction. SIGMOD01, pages 91--102, 2001. ACM Press.

[4221] Mahesh V. Joshi and Ramesh C. Agarwal and Vipin Kumar. Predicting rare classes: can boosting make any weak learner strong?. SIGMOD02, pages 297--306, 2002. ACM Press.

[4222] Mahesh V. Joshi and Ramesh C. Agarwal and Vipin Kumar. Predicting Rare Classes: Comparing Two-Phase Rule Induction to Cost-Sensitive Boosting. PKDD02, pages 237--249, 2002. Springer-Verlag.

[4223] Mahesh V. Joshi and Vipin Kumar and Ramesh C. Agarwal. Evaluating Boosting Algorithms to Classify Rare Classes: Comparison and Improvements. ICDM01, pages 257-264, 2001.

[4224] E. Keogh and S. Lonardi and B. Chiu. Finding Surprising Patterns in a Time Series Database in Linear Time and Space. KDD02, Edmonton, Alberta, Canada, 2002.

[4225] Edwin M. Knorr and Raymond T. Ng. A Unified Notion of Outliers: Properties and Computation. KDD97, pages 219-222, 1997.

[4226] Edwin M. Knorr and Raymond T. Ng. Algorithms for Mining Distance-Based Outliers in Large Datasets. VLDB98, pages 392--403, 1998.

[4227] Edwin M. Knorr and Raymond T. Ng and Vladimir Tucakov. Distance-based outliers: algorithms and applications. The VLDB Journal, 8(3-4):237--253, 2000.

[4669] Joseph B. Kruskal and Myron Wish. Multidimensional Scaling. SAGE Publications, 1978.

[4229] T. Lane and C. E. Brodley. An Application of Machine Learning to Anomaly Detection. Proc. 20th NIST-NCSC National Information Systems Security Conf., pages 366--380, 1997.

[4230] Aleksandar Lazarevic and Levent Ertöz and Vipin Kumar and Aysel Ozgur and Jaideep Srivastava. A Comparative Study of Anomaly Detection Schemes in Network Intrusion Detection. SDM03, 2003.

[4231] Aleksandar Lazarevic and Vipin Kumar and Jaideep Srivastava. Intrusion Detection: A Survey. Managing Cyber Threats: Issues, Approaches and Challenges, pages 19--80. Kluwer Academic Publisher, 2005.

[4232] Wenke Lee and Salvatore J. Stolfo. Data Mining Approaches for Intrusion Detection. 7th USENIX Security Symposium, pages 26--29, 1998.

[4233] Wenke Lee and Salvatore J. Stolfo and Kui W. Mok. A Data Mining Framework for Building Intrusion Detection Models. IEEE Symposium on Security and Privacy, pages 120-132, 1999.

[4234] Wenke Lee and Dong Xiang. Information-theoretic measures for anomaly detection. Proc. of the 2001 IEEE Symposium on Security and Privacy, pages 130--143, 2001.

[4235] Regina Y. Liu and Jesse M. Parelius and Kesar Singh. Multivariate analysis by data depth: descriptive statistics, graphics and inference. Annals of Statistics, 27(3):783--858, 1999.

[4236] Markos Markou and Sameer Singh. Novelty detection: A review--part 1: Statistical approaches. Signal Processing, 83(12):2481--2497, 2003.

[4237] Markos Markou and Sameer Singh. Novelty detection: A review--part 2: Neural network based approaches. Signal Processing, 83(12):2499--2521, 2003.

[4238] C. R. Muirhead. Distinguishing Outlier Types in Time Series. Journal of the Royal Statistical Society. Series B (Methodological), 48(1):39--47, 1986.

[4239] L. Portnoy and E. Eskin and S. J. Stolfo. Intrusion detection with unlabeled data using clustering. In ACM Workshop on Data Mining Applied to Security, 2001.

[4240] Sridhar Ramaswamy and Rajeev Rastogi and Kyuseok Shim. Efficient algorithms for mining outliers from large data sets. SIGMOD00, pages 427--438, 2000. ACM Press.

[4241] David M. Rocke and David L. Woodruff. Identification of Outliers in Multivariate Data. Journal of the American Statistical Association, 91(435):1047--1061, 1996.

[4242] Bernard Rosner. On the Detection of Many Outliers. Technometrics, 17(3):221--227, 1975.

[4243] Peter J. Rousseeuw and Ida Ruts and John W. Tukey. The Bagplot: A Bivariate Boxplot. The American Statistician, 53(4):382--387, 1999.

[4244] Peter J. Rousseeuw and Bert C. van Zomeren. Unmasking Multivariate Outliers and Leverage Points. Journal of the American Statistical Association, 85(411):633-639, 1990.

[4671] Roweis, Sam T. and Saul, Lawrence K. Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science, 290(5500):2323-2326, 2000.

[4672] Bernhard Schölkopf and Alex J. Smola and Klaus-Robert Müller. Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural Computation, 10(5):1299-1319, 1998.

[4247] Scott, D. W. Partial Mixture Estimation and Outlier Detection in Data and Regression. In M. Hubert and G. Pison and A. Struyf and S. Van Aelst, editors, Theory and Applications of Recent Robust Methods in Statistics for Industry and Technology. Birkhauser, 2003.

[4248] Shashi Shekhar and Chang-Tien Lu and Pusheng Zhang. A Unified Approach to Detecting Spatial Outliers. GeoInformatica, 7(2):139--166, 2003.

[4249] Mei-Ling Shyu and Shu-Ching Chen and Kanoksri Sarinnapakorn and Liwu Chang. A Novel Anomaly Detection Scheme Based on Principal Component Classifier. ICDM03, pages 353--365, 2003.

[4674] Gilbert Strang. Linear Algebra and Its Applications. Harcourt Brace & Company, Orlando, FL, 3rd edition, 1986.

[4251] P. Sykacek. Equivalent error bars for neural network classifiers trained by bayesian inference. Proc. of the European Symposium on Artificial Neural Networks, pages 121--126, 1997.

[4675] Tenenbaum, Joshua B. and Silva, Vin de and Langford, John C. A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science, 290(5500):2319-2323, 2000.

[4676] Jieping Ye and Ravi Janardan and Qi Li. GPCA: an efficient dimension reduction scheme for image compression and retrieval.In Won Kim and Ron Kohavi and Johannes Gehrke and William DuMouchel, editors, KDD04, pages 354-363, Seattle, Washington, 2004. ACM.

[4677] Jieping Ye and Qi Li and Hui Xiong and Haesun Park and Ravi Janardan and Vipin Kumar. IDR/QR: an incremental dimension reduction algorithm via QR decomposition.In Won Kim and Ron Kohavi and Johannes Gehrke and William DuMouchel, editors, KDD04, pages 364-373, Seattle, Washington, 2004. ACM.

[4255] Nong Ye and Q. Chen. Chi-square Statistical Profiling for Anomaly Detection. Proc. of the 2000 IEEE Workshop on Information Assurance and Security, pages 187--193, 2000.

[4256] Chawla, N. V. and Japkowicz, N. and Kolcz, A., editors. SIGKDD Explorations Newsletter, Special issue on learning from imbalanced datasets, 2004. ACM Press.

[4691] Bennett, K. and Campbell, C. Support Vector Machines: Hype or Hallelujah. SIGKDD Explorations, 2(2):1--13, 2000.

[4692] Berry, M. J. A. and Linoff, G. Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management. Wiley Computer Publishing, 2nd edition, 2004.

[4693] Bishop, C. M. Neural Networks for Pattern Recognition. Oxford University Press, Oxford, U.K., 1995.

[4694] Bolton, R. J. and Hand, D. J. and Adams, N. M. Determining Hit Rate in Pattern Search. Proc. of the ESF Exploratory Workshop on Pattern Detection and Discovery in Data Mining, pages 36--48, London, UK, 2002.

[4695] Boulicaut, J-F. and Bykowski, A. and Jeudy, B. Towards the Tractable Discovery of Association Rules with Negations. Proc. of the 4th Intl. Conf on Flexible Query Answering Systems FQAS'00, pages 425--434, Warsaw, Poland, 2000.

[4696] Bradley, A. P. The use of the area under the ROC curve in the Evaluation of Machine Learning Algorithms. Pattern Recognition, 30(7):1145--1149, 1997.

[4697] Paul S. Bradley and Johannes Gehrke and Raghu Ramakrishnan and Ramakrishnan Srikant. Scaling mining algorithms to large databases. Communications of the ACM, 45(8):38-43, 2002.

[4698] Breiman, L. Bagging Predictors. Machine Learning, 24(2):123--140, 1996.

[4699] Breiman, L. Bias, Variance, and Arcing Classifiers. Technical report, 486, University of California, Berkeley, CA, 1996.

[4700] Breiman, L. Random Forests. Machine Learning, 45(1):5--32, 2001.

[4701] Breiman, L. and Friedman, J. H. and Olshen, R. and Stone, C. J. Classification and Regression Trees. Chapman & Hall, New York, 1984.

[4689] Breslow, L. A. and Aha, D. W. Simplifying Decision Trees: A Survey. Knowledge Engineering Review, 12(1):1--40, 1997.

[4702] Brin, S. and Motwani, R. and Silverstein, C. Beyond market baskets: Generalizing association rules to correlations. Proc. ACM SIGMOD Intl. Conf. Management of Data, pages 265--276, Tucson, AZ, 1997.

[4703] Brin, S. and Motwani, R. and Ullman, J. and Tsur, S. Dynamic Itemset Counting and Implication Rules for market basket data. SIGMOD97, pages 255--264, Tucson, AZ, 1997.

[4704] Buntine, W. Learning classification trees. In Hand, D. J., editors, Artificial Intelligence Frontiers in Statistics, pages 182--201, 1993. Chapman & Hall, London.

[4705] Burges, C. J. C. A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 2(2):121--167, 1998.

[4706] Cai, C. H. and Fu, A. and Cheng, C. H. and Kwong, W. W. Mining Association Rules with Weighted Items. Proc. of IEEE Intl. Database Engineering and Applications Symp., pages 68--77, Cardiff, Wales, 1998.

[4707] Cant u' -Paz, E. and Kamath, C. Using evolutionary algorithms to induce oblique decision trees. Proc. of the Genetic and Evolutionary Computation Conf., pages 1053--1060, San Francisco, CA, 2000.

[4708] Chakrabarti, S. Mining the Web: Discovering Knowledge from Hypertext Data. Morgan Kaufmann, San Francisco, CA, 2003.

[4709] Chawla, N. V. and Bowyer, K. W. and Hall, L. O. and Kegelmeyer, W. P. SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16:321--357, 2002.

[4710] Chawla, N. V. and Japkowicz, N. and Kolcz, A. Editorial: Special Issue on Learning from Imbalanced Data Sets. SIGKDD Explorations, 6(1):1--6, 2004.

[4711] Chen, Q. and Dayal, U. and Hsu, M. A Distributed OLAP infrastructure for E-Commerce. Proc. of the 4th IFCIS Intl. Conf. on Cooperative Information Systems, pages 209--220, Edinburgh, Scotland, 1999.

[4712] Cheng, H. and Yan, X. and Han, J. IncSpan: incremental mining of sequential patterns in large database. KDD04, pages 527-532, Seattle, WA, 2004.

[4713] Cherkassky, V. and Mulier, F. Learning from Data: Concepts, Theory, and Methods. Wiley Interscience, 1998.

[4714] Cheung, D. C. and Lee, S. D. and Kao, B. A General Incremental Technique for Maintaining Discovered Association Rules. Proc. of the 5th Intl. Conf. on Database Systems for Advanced Applications, pages 185--194, Melbourne, Australia, 1997.

[4715] Clark, P. and Boswell, R. Rule Induction with CN2: Some Recent Improvements. Machine Learning: Proc. of the 5th European Conf. (EWSL-91), pages 151--163, 1991.

[4716] Clark, P. and Niblett, T. The CN2 Induction Algorithm. Machine Learning, 3(4):261--283, 1989.

[4717] Cohen, W. W. Fast Effective Rule Induction. ICML95, pages 115--123, Tahoe City, CA, 1995.

[4718] Cooley, R. and Tan, P. N. and Srivastava, J. Discovery of Interesting Usage Patterns from Web Data. In Spiliopoulou, M. and Masand, B., editors, Advances in Web Usage Analysis and User Profiling, pages 163--182. Lecture Notes in Computer Science, 2000.

[4719] Cost, S. and Salzberg, S. A Weighted Nearest Neighbor Algorithm for Learning with Symbolic Features. Machine Learning, 10:57--78, 1993.

[4720] Cover, T. M. and Hart, P. E. Nearest Neighbor Pattern Classification. Knowledge Based Systems, 8(6):373--389, 1995.

[4721] Cristianini, N. and Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, 2000.

[4722] Dietterich, T. G. Ensemble Methods in Machine Learning. First Intl. Workshop on Multiple Classifier Systems, Cagliari, Italy, 2000.

[4723] Dietterich, T. G. and Bakiri, G. Solving Multiclass Learning Problems via Error-Correcting Output Codes. Journal of Artificial Intelligence Research, 2:263--286, 1995.

[4724] Dokas, P. and Ertöz, L. and Kumar, V. and Lazarevic, A. and Srivastava, J. and Tan, P. N. Data Mining for Network Intrusion Detection. Proc. NSF Workshop on Next Generation Data Mining, Baltimore, MD, 2002.

[4725] Domingos, P. MetaCost: A General Method for Making Classifiers Cost-Sensitive. KDD99, pages 155--164, San Diego, CA, 1999.

[4726] Domingos, P. The RISE system: Conquering without separating. Proc. of the 6th IEEE Intl. Conf. on Tools with Artificial Intelligence, pages 704--707, New Orleans, LA, 1994.

[4727] Domingos, P. The Role of Occam's Razor in Knowledge Discovery. Data Mining and Knowledge Discovery, 3(4):409--425, 1999.

[4728] Domingos, P. and Pazzani, M. On the Optimality of the Simple Bayesian Classifier under Zero-One Loss. Machine Learning, 29(2-3):103--130, 1997.

[4729] Dong, G. and Li, J. Efficient Mining of Emerging Patterns: Discovering Trends and Differences. KDD99, pages 43--52, San Diego, CA, 1999.

[4730] Dong, G. and Li, J. Interestingness of discovered association rules in terms of neighborhood-based unexpectedness. PAKDD98, pages 72--86, Melbourne, Australia, 1998.

[4731] Drummond, C. and Holte, R. C. C4.5, Class imbalance, and Cost sensitivity: Why under-sampling beats over-sampling. ICML'2004 Workshop on Learning from Imbalanced Data Sets II, Washington, DC, 2003.

[4732] Duda, R. O. and Hart, P. E. and Stork, D. G. Pattern Classification. John Wiley & Sons, Inc., New York, 2nd edition, 2001.

[4733] DuMouchel, W. and Pregibon, D. Empirical Bayes Screening for Multi-Item Associations. KDD01, pages 67--76, San Francisco, CA, 2001.

[4734] Dunham, M. H. Data Mining: Introductory and Advanced Topics. Prentice Hall, 2002.

[4735] Dunkel, B. and Soparkar, N. Data Organization and Access for Efficient Data Mining. ICDE99, pages 522--529, Sydney, Australia, 1999.

[4736] Efron, B. and Tibshirani, R. Cross-validation and the Bootstrap: Estimating the Error Rate of a Prediction Rule. Technical report, Stanford University, 1995.

[4737] Elkan, C. The Foundations of Cost-Sensitive Learning. Proc. of the 17th Intl. Joint Conf. on Artificial Intelligence, pages 973--978, Seattle, WA, 2001.

[4738] Esposito, F. and Malerba, D. and Semeraro, G. A Comparative Analysis of Methods for Pruning Decision Trees. IEEE Trans. Pattern Analysis and Machine Intelligence, 19(5):476--491, 1997.

[4739] F u ¨ rnkranz, J. and Widmer, G. Incremental reduced error pruning. ICML94, pages 70--77, New Brunswick, NJ, 1994.

[4740] Fabris, C. C. and Freitas, A. A. Discovering surprising patterns by detecting occurrences of Simpson's paradox. Proc. of the 19th SGES Intl. Conf. on Knowledge-Based Systems and Applied Artificial Intelligence), pages 148--160, Cambridge, UK, 1999.

[4741] Fan, W. and Stolfo, S. J. and Zhang, J. and Chan, P. K. AdaCost: misclassification cost-sensitive boosting. ICML99, pages 97--105, Bled, Slovenia, 1999.

[4742] Usama M. Fayyad and Gregory Piatetsky-Shapiro and Padhraic Smyth. From Data Mining to Knowledge Discovery: An Overview. Advances in Knowledge Discovery and Data Mining, pages 1-34. AAAI Press, 1996.

[4743] Feng, L. and Lu, H. J. and Yu, J. X. and Han, J. Mining inter-transaction associations with templates. CIKM99, pages 225--233, Kansas City, Missouri, 1999.

[4744] Ferri, C. and Flach, P. and Hernandez-Orallo, J. Learning Decision Trees Using the Area Under the ROC Curve. ICML02, pages 139--146, Sydney, Australia, 2002.

[4745] Fisher, R. A. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7:179--188, 1936.

[4746] Freitas, A. A. Understanding the crucial differences between classification and discovery of association rules---a position paper. SIGKDD Explorations, 2(1):65--69, 2000.

[4747] Freund, Y. and Schapire, R. E. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119--139, 1997.

[4748] Friedman, J. H. Data Mining and Statistics: What's the Connection?. Unpublished. www-stat.stanford.edu/ : jhf/ftp/dm-stat.ps, 1997.

[4749] Friedman, J. H. and Fisher, N. I. Bump hunting in high-dimensional data. Statistics and Computing, 9(2):123--143, 1999.

[4750] Fukuda, T. and Morimoto, Y. and Morishita, S. and Tokuyama, T. Mining Optimized Association Rules for Numeric Attributes. PODS96, pages 182--191, Montreal, Canada, 1996.

[4751] Fukunaga, K. Introduction to Statistical Pattern Recognition. Academic Press, New York, 1990.

[4752] Garofalakis, M. N. and Rastogi, R. and Shim, K. SPIRIT: Sequential Pattern Mining with Regular Expression Constraints. VLDB99, pages 223--234, Edinburgh, Scotland, 1999.

[4753] Gehrke, J. and Ramakrishnan, R. and Ganti, V. RainForest---A Framework for Fast Decision Tree Construction of Large Datasets. Data Mining and Knowledge Discovery, 4(2/3):127--162, 2000.

[4754] Clark Glymour and David Madigan and Daryl Pregibon and Padhraic Smyth. Statistical Themes and Lessons for Data Mining. Data Mining and Knowledge Discovery, 1(1):11--28, 1997.

[4755] Robert L. Grossman and Mark F. Hornick and Gregor Meyer. Data mining standards initiatives. Communications of the ACM, 45(8):59-61, 2002.

[4756] Gunopulos, D. and Khardon, R. and Mannila, H. and Toivonen, H. Data Mining, Hypergraph Transversals, and Machine Learning. PODS97, pages 209--216, Tucson, AZ, 1997.

[4757] Han, E.-H. and Karypis, G. and Kumar, V. Min-Apriori: An Algorithm for Finding Association Rules in Data with Continuous Attributes. http://www.cs.umn.edu/han, 1997.

[4758] Han, E.-H. and Karypis, G. and Kumar, V. Scalable Parallel Data Mining for Association Rules. SIGMOD97, pages 277--288, Tucson, AZ, 1997.

[4759] Han, E.-H. and Karypis, G. and Kumar, V. Text Categorization Using Weight Adjusted k-Nearest Neighbor Classification. PAKDD01, Lyon, France, 2001.

[4760] Han, E.-H. and Karypis, G. and Kumar, V. and Mobasher, B. Clustering Based on Association Rule Hypergraphs. DMKD97, Tucson, AZ, 1997.

[4761] Han, J. and Fu, Y. Mining Multiple-Level Association Rules in Large Databases. IEEE Trans. on Knowledge and Data Engineering, 11(5):798--804, 1999.

[4762] Han, J. and Fu, Y. and Koperski, K. and Wang, W. and Zaďane, O. R. DMQL: A data mining query language for relational databases. DMKD96, Montreal, Canada, 1996.

[4763] Han, J. and Kamber, M. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, San Francisco, 2001.

[4764] Han, J. and Pei, J. and Yin, Y. Mining Frequent Patterns without Candidate Generation. Proc. ACM-SIGMOD Int. Conf. on Management of Data (SIGMOD'00), pages 1--12, Dallas, TX, 2000.

[4765] Jiawei Han and Russ B. Altman and Vipin Kumar and Heikki Mannila and Daryl Pregibon. Emerging scientific applications in data mining. Communications of the ACM, 45(8):54-58, 2002.

[4766] Hand, D. J. Data Mining: Statistics and More?. The American Statistician, 52(2):112--118, 1998.

[4767] Hand, D. J. and Mannila, H. and Smyth, P. Principles of Data Mining. MIT Press, 2001.

[4768] Hastie, T. and Tibshirani, R. Classification by pairwise coupling. Annals of Statistics, 26(2):451--471, 1998.

[4769] Hastie, T. and Tibshirani, R. and Friedman, J. H. The Elements of Statistical Learning: Data Mining, Inference, Prediction. Springer, New York, 2001.

[4770] Hearst, M. Trends & Controversies: Support Vector Machines. IEEE Intelligent Systems, 13(4):18--28, 1998.

[4771] Heath, D. and Kasif, S. and Salzberg, S. Induction of Oblique Decision Trees. Proc. of the 13th Intl. Joint Conf. on Artificial Intelligence, pages 1002--1007, Chambery, France, 1993.

[4772] Heckerman, D. Bayesian Networks for Data Mining. Data Mining and Knowledge Discovery, 1(1):79--119, 1997.

[4773] Hidber, C. Online Association Rule Mining. SIGMOD99, pages 145--156, Philadelphia, PA, 1999.

[4774] Hilderman, R. J. and Hamilton, H. J. Knowledge Discovery and Measures of Interest. Kluwer Academic Publishers, 2001.

[4775] Hipp, J. and Guntzer, U. and Nakhaeizadeh, G. Algorithms for Association Rule Mining---A General Survey. SigKDD Explorations, 2(1):58--64, 2000.

[4776] Hofmann, H. and Siebes, A. P. J. M. and Wilhelm, A. F. X. Visualizing Association Rules with Interactive Mosaic Plots. KDD00, pages 227--235, Boston, MA, 2000.

[4777] Holt, J. D. and Chung, S. M. Efficient Mining of Association Rules in Text Databases. CIKM99, pages 234--242, Kansas City, Missouri, 1999.

[4778] Holte, R. C. Very Simple Classification Rules Perform Well on Most Commonly Used Data sets. Machine Learning, 11:63--91, 1993.

[4779] Houtsma, M. and Swami, A. Set-oriented Mining for Association Rules in Relational Databases. ICDE95, pages 25--33, Taipei, Taiwan, 1995.

[4780] Huang, Y. and Shekhar, S. and Xiong, H. Discovering Co-location Patterns from Spatial Datasets: A General Approach. IEEE Trans. on Knowledge and Data Engineering, 16(12):1472--1485, 2004.

[4781] Imielinski, T. and Virmani, A. and Abdulghani, A. DataMine: Application Programming Interface and Query Language for Database Mining. KDD96, pages 256--262, Portland, Oregon, 1996.

[4782] Inokuchi, A. and Washio, T. and Motoda, H. An Apriori-based Algorithm for Mining Frequent Substructures from Graph Data. PKDD00, pages 13--23, Lyon, France, 2000.

[4783] Jain, A. K. and Duin, R. P. W. and Mao, J. Statistical Pattern Recognition: A Review. IEEE Tran. Patt. Anal. and Mach. Intellig., 22(1):4--37, 2000.

[4784] Japkowicz, N. The Class Imbalance Problem: Significance and Strategies. Proc. of the 2000 Intl. Conf. on Artificial Intelligence: Special Track on Inductive Learning, pages 111--117, Las Vegas, NV, 2000.

[4785] Jaroszewicz, S. and Simovici, D. Interestingness of Frequent Itemsets Using Bayesian Networks as Background Knowledge. KDD04, pages 178--186, Seattle, WA, 2004.

[4786] Jensen, D. and Cohen, P. R. Multiple Comparisons in Induction Algorithms. Machine Learning, 38(3):309--338, 2000.

[4787] Joshi, M. V. On Evaluating Performance of Classifiers for Rare Classes. ICDM02, Maebashi City, Japan, 2002.

[4788] Joshi, M. V. and Agarwal, R. C. and Kumar, V. Mining Needles in a Haystack: Classifying Rare Classes via Two-Phase Rule Induction. SIGMOD01, pages 91-102, Santa Barbara, CA, 2001.

[4789] Joshi, M. V. and Agarwal, R. C. and Kumar, V. Predicting rare classes: can boosting make any weak learner strong?. KDD02, pages 297-306, Edmonton, Canada, 2002.

[4790] Joshi, M. V. and Karypis, G. and Kumar, V. A Universal Formulation of Sequential Patterns. Proc. of the KDD'2001 workshop on Temporal Data Mining, San Francisco, CA, 2001.

[4791] Joshi, M. V. and Karypis, G. and Kumar, V. ScalParC: A New Scalable and Efficient Parallel Classification Algorithm for Mining Large Datasets. Proc. of 12th Intl. Parallel Processing Symp. (IPPS/SPDP), pages 573-579, Orlando, FL, 1998.

[4792] Joshi, M. V. and Kumar, V. CREDOS: Classification Using Ripple Down Structure (A Case for Rare Classes). SDM04, pages 321-332, Orlando, FL, 2004.

[4793] Kamber, M. and Shinghal, R. Evaluating the Interestingness of Characteristic Rules. KDD96, pages 263--266, Portland, Oregon, 1996.

[4794] Kantardzic, M. Data Mining: Concepts, Models, Methods, and Algorithms. Wiley-IEEE Press, Piscataway, NJ, 2003.

[4795] Kass, G. V. An Exploratory Technique for Investigating Large Quantities of Categorical Data. Applied Statistics, 29:119--127, 1980.

[4796] Kim, B. and Landgrebe, D. Hierarchical decision classifiers in high-dimensional and large class data. IEEE Trans. on Geoscience and Remote Sensing, 29(4):518--528, 1991.

[4797] Klemettinen, M. A Knowledge Discovery Methodology for Telecommunication Network Alarm Databases. PhD thesis, University of Helsinki, 1999.

[4798] Kohavi, R. A Study on Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. Proc. of the 15th Intl. Joint Conf. on Artificial Intelligence, pages 1137--1145, Montreal, Canada, 1995.

[4799] Kong, E. B. and Dietterich, T. G. Error-Correcting Output Coding Corrects Bias and Variance. ICML95, pages 313--321, Tahoe City, CA, 1995.

[4800] Kosters, W. A. and Marchiori, E. and Oerlemans, A. Mining Clusters with Association Rules. The 3rd Symp. on Intelligent Data Analysis (IDA99), pages 39--50, Amsterdam, 1999.

[4801] Kubat, M. and Matwin, S. Addressing the Curse of Imbalanced Training Sets: One Sided Selection. ICML97, pages 179--186, Nashville, TN, 1997.

[4802] Kulkarni, S. R. and Lugosi, G. and Venkatesh, S. S. Learning Pattern Classification---A Survey. IEEE Tran. Inf. Theory, 44(6):2178--2206, 1998.

[4803] Kumar, V. and Joshi, M. V. and Han, E.-H. and Tan, P. N. and Steinbach, M. High Performance Data Mining. High Performance Computing for Computational Science (VECPAR 2002), pages 111-125. Springer, 2002.

[4804] Kuok, C. M. and Fu, A. and Wong, M. H. Mining Fuzzy Association Rules in Databases. ACM SIGMOD Record, 27(1):41--46, 1998.

[4805] Kuramochi, M. and Karypis, G. Discovering Frequent Geometric Subgraphs. ICDM02, pages 258--265, Maebashi City, Japan, 2002.

[4806] Kuramochi, M. and Karypis, G. Frequent Subgraph Discovery. ICDM01, pages 313--320, San Jose, CA, 2001.

[4807] Diane Lambert. What Use is Statistics for Massive Data?. ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, pages 54-62, 2000.

[4808] Landeweerd, G. and Timmers, T. and Gersema, E. and Bins, M. and Halic, M. Binary tree versus single level tree classification of white blood cells. Pattern Recognition, 16:571--577, 1983.

[4809] Langley, P. and Iba, W. and Thompson, K. An analysis of Bayesian classifiers. Proc. of the 10th National Conf. on Artificial Intelligence, pages 223--228, 1992.

[4810] Lee, W. and Stolfo, S. J. and Mok, K. W. Adaptive Intrusion Detection: A Data Mining Approach. Artificial Intelligence Review, 14(6):533--567, 2000.

[4811] Lent, B. and Swami, A. and Widom, J. Clustering Association Rules. ICDE97, pages 220--231, Birmingham, U.K, 1997.

[4812] Lewis, D. D. Naive Bayes at Forty: The Independence Assumption in Information Retrieval. Proc. of the 10th European Conf. on Machine Learning (ECML 1998), pages 4--15, 1998.

[4813] Li, W. and Han, J. and Pei, J. CMAR: Accurate and Efficient Classification Based on Multiple Class-association Rules. ICDM01, pages 369--376, San Jose, CA, 2001.

[4814] Liu, B. and Hsu, W. and Chen, S. Using General Impressions to Analyze Discovered Classification Rules. KDD97, pages 31--36, Newport Beach, CA, 1997.

[4815] Liu, B. and Hsu, W. and Ma, Y. Integrating Classification and Association Rule Mining. KDD98, pages 80--86, New York, NY, 1998.

[4816] Liu, B. and Hsu, W. and Ma, Y. Mining association rules with multiple minimum supports. KDD99, pages 125--134, San Diego, CA, 1999.

[4817] Liu, B. and Hsu, W. and Ma, Y. Pruning and Summarizing the Discovered Associations. KDD99, pages 125--134, San Diego, CA, 1999.

[4818] Mangasarian, O. Data Mining via Support Vector Machines. Technical report, Technical Report 01-05, Data Mining Institute, 2001.

[4819] Mannila, H. and Toivonen, H. and Verkamo, A. I. Discovery of Frequent Episodes in Event Sequences. Data Mining and Knowledge Discovery, 1(3):259--289, 1997.

[4820] Marcus, A. and Maletic, J. I. and Lin, K.-I. Ordinal association rules for error identification in data sets. CIKM01, pages 589--591, Atlanta, GA, 2001.

[4821] Margineantu, D. D. and Dietterich, T. G. Learning Decision Trees for Loss Minimization in Multi-Class Problems.Technical report, 99-30-03, Oregon State University, 1999.

[4822] Megiddo, N. and Srikant, R. Discovering Predictive Association Rules. KDD98, pages 274--278, New York, 1998.

[4823] Mehta, M. and Agrawal, R. and Rissanen, J. SLIQ: A Fast Scalable Classifier for Data Mining. Proc. of the 5th Intl. Conf. on Extending Database Technology, pages 18--32, Avignon, France, 1996.

[4824] Meo, R. and Psaila, G. and Ceri, S. A New SQL-like Operator for Mining Association Rules. VLDB96, pages 122--133, Bombay, India, 1996.

[4825] Michalski, R. S. A theory and methodology of inductive learning. Artificial Intelligence, 20:111--116, 1983.

[4826] Michalski, R. S. and Mozetic, I. and Hong, J. and Lavrac, N. The Multi-Purpose Incremental Learning System AQ15 and Its Testing Application to Three Medical Domains. Proc. of 5th National Conf. on Artificial Intelligence, Orlando, 1986.

[4827] Michie, D. and Spiegelhalter, D. J. and Taylor, C. C. Machine Learning, Neural and Statistical Classification. Ellis Horwood, Upper Saddle River, NJ, 1994.

[4828] Miller, R. J. and Yang, Y. Association Rules over Interval Data. SIGMOD97, pages 452--461, Tucson, AZ, 1997.

[4829] Mingers, J. An empirical comparison of pruning methods for decision tree induction. Machine Learning, 4:227--243, 1989.

[4830] Mingers, J. Expert Systems---Rule Induction with Statistical Data. J Operational Research Society, 38:39--47, 1987.

[4831] Mitchell, T. Machine Learning. McGraw-Hill, Boston, MA, 1997.

[4832] Moret, B. M. E. Decision Trees and Diagrams. Computing Surveys, 14(4):593--623, 1982.

[4833] Morimoto, Y. and Fukuda, T. and Matsuzawa, H. and Tokuyama, T. and Yoda, K. Algorithms for mining association rules for binary segmentations of huge categorical databases. VLDB98, pages 380--391, New York, 1998.

[4834] Mosteller, F. Association and Estimation in Contingency Tables. Journal of the American Statistical Association, 63:1--28, 1968.

[4835] Mueller, A. Fast sequential and parallel algorithms for association rule mining: A comparison. Technica