## 2.6. Általános felülről-lefelé elemzés

Megjegyzés A feladatmegoldások során felső indexként adjuk meg a lépések Fülöp Zoltán jegyzete [Fülöp99] szerinti sorszámát. A sikertelen megoldást jelző 6.2 esetet viszont sosem írtuk ki, mert ekkor nincs átmenet.
1. (q,1,λ,E), 1(q,1,E1,T), 1(q,1,E1T1,F), 1(q,1,E1T1F1,i), 2(q,2,E1T1F1i,λ), 4(b,2,E1T1F1i,λ), 5(b,1,E1T1F1,i), 6.1(q,1,E1T1F2,(E)), 4(b,1,E1T1F2,(E)), 6.3(b,1,E1T1,F), 6.1(q,1,E1T2,FT'), 1(q,1,E1T2F1,iT'), 2(q,2,E1T2F1i,T'), 1(q,2,E1T2F1iT'1,*F), 2(q,3,E1T2F1iT'1*,F), 1(q,3,E1T2F1iT'1*F1,i), 2(q,4,E1T2F1iT'1*F1i,λ), 4(b,4,E1T2F1iT'1*F1i,λ), 5(b,3,E1T2F1iT'1*F1,i), 6.1(q,3,E1T2F1iT'1*F2,(E)), 4(b,3,E1T2F1iT'1*F2,(E)), 6.3(b,3,E1T2F1iT'1*,F), 5(b,2,E1T2F1iT'1,*F), 6.1(q,2,E1T2F1iT'2,*FT'), 2(q,3,E1T2F1iT'2*,FT'), 1(q,3,E1T2F1iT'2*F1,iT'), 2(q,4,E1T2F1iT'2*F1i,T'), 1(q,4,E1T2F1iT'2*F1iT'1,*F), 4(b,4,E1T2F1iT'2*F1iT'1,*F), 6.1(q,4,E1T2F1iT'2*F1iT'2,*FT'), 4(b,4,E1T2F1iT'2*F1iT'2,*FT'), 6.3(b,4,E1T2F1iT'2*F1i,T'), 5(b,3,E1T2F1iT'2*F1,iT'), 6.1(q,3,E1T2F1iT'2*F2,(E)T'), 4(b,3,E1T2F1iT'2*F2,(E)T'), 6.3(b,3,E1T2F1iT'2*,FT'), 5(b,2,E1T2F1iT'2,*FT'), 6.3(b,2,E1T2F1i,T'), 5(b,1,E1T2F1,iT'), 6.1(q,1,E1T2F2,(E)T'), 4(b,1,E1T2F2,(E)T'), 6.3(b,1,E1T2,FT'), 6.3(b,1,E1,T), 6.1(q,1,E2,TE'), 1(q,1,E2T1,FE'), 1(q,1,E2T1F1,iE'), 2(q,2,E2T1F1i,E'), 1(q,2,E2T1F1iE'1,+T), 4(b,2,E2T1F1iE'1,+T), 6.1(q,2,E2T1F1iE'2,+TE'), 4(b,2,E2T1F1iE'2,+TE'), 6.3(b,2,E2T1F1i,E'), 5(b,1,E2T1F1,iE'), 6.1(q,1,E2T1F2,(E)E'), 4(b,1,E2T1F2,(E)E'), 6.3(b,1,E2T1,FE'), 6.1(q,1,E2T2,FT'E'), 1(q,1,E2T2F1,iT'E'), 2(q,2,E2T2F1i,T'E'), 1(q,2,E2T2F1iT'1,*FE'), 2(q,3,E2T2F1iT'1*,FE'), 1(q,3,E2T2F1iT'1*F1,iE'), 2(q,4,E2T2F1iT'1*F1i,E'), 1(q,4,E2T2F1iT'1*F1iE'1,+T), 2(q,5,E2T2F1iT'1*F1iE'1+,T), 1(q,5,E2T2F1iT'1*F1iE'1+T1,F), 1(q,5,E2T2F1iT'1*F1iE'1+T1F1,i), 4(b,5,E2T2F1iT'1*F1iE'1+T1F1,i), 6.1(q,5,E2T2F1iT'1*F1iE'1+T1F2,(E)), 4(b,5,E2T2F1iT'1*F1iE'1+T1F2,(E)), 6.3(b,5,E2T2F1iT'1*F1iE'1+T1,F), 6.1(q,5,E2T2F1iT'1*F1iE'1+T2,FT'), 1(q,5,E2T2F1iT'1*F1iE'1+T2F1,iT'), 4(b,5,E2T2F1iT'1*F1iE'1+T2F1,iT'), 6.1(q,5,E2T2F1iT'1*F1iE'1+T2F2,(E)T'), 4(b,5,E2T2F1iT'1*F1iE'1+T2F2,(E)T'), 6.3(b,5,E2T2F1iT'1*F1iE'1+T2,FT'), 6.3(b,5,E2T2F1iT'1*F1iE'1+,T), 5(b,4,E2T2F1iT'1*F1iE'1,+T), 6.1(q,4,E2T2F1iT'1*F1iE'2,+TE'), 2(q,5,E2T2F1iT'1*F1iE'2+,TE'), 1(q,5,E2T2F1iT'1*F1iE'2+T1,FE'), 1(q,5,E2T2F1iT'1*F1iE'2+T1F1,iE'), 4(b,5,E2T2F1iT'1*F1iE'2+T1F1,iE'), 6.1(q,5,E2T2F1iT'1*F1iE'2+T1F2,(E)E'), 4(b,5,E2T2F1iT'1*F1iE'2+T1F2,(E)E'), 6.3(b,5,E2T2F1iT'1*F1iE'2+T1,FE'), 6.1(q,5,E2T2F1iT'1*F1iE'2+T2,FT'E'), 1(q,5,E2T2F1iT'1*F1iE'2+T2F1,iT'E'), 4(b,5,E2T2F1iT'1*F1iE'2+T2F1,iT'E'), 6.1(q,5,E2T2F1iT'1*F1iE'2+T2F2,(E)T'E'), 4(b,5,E2T2F1iT'1*F1iE'2+T2F2,(E)T'E'), 6.3(b,5,E2T2F1iT'1*F1iE'2+T2,FT'E'), 6.3(b,5,E2T2F1iT'1*F1iE'2+,TE'), 5(b,4,E2T2F1iT'1*F1iE'2,+TE'), 6.3(b,4,E2T2F1iT'1*F1i,E'), 5(b,3,E2T2F1iT'1*F1,iE'), 6.1(q,3,E2T2F1iT'1*F2,(E)E'), 4(b,3,E2T2F1iT'1*F2,(E)E'), 6.3(b,3,E2T2F1iT'1*,FE'), 5(b,2,E2T2F1iT'1,*FE'), 6.1(q,2,E2T2F1iT'2,*FT'E'), 2(q,3,E2T2F1iT'2*,FT'E'), 1(q,3,E2T2F1iT'2*F1,iT'E'), 2(q,4,E2T2F1iT'2*F1i,T'E'), 1(q,4,E2T2F1iT'2*F1iT'1,*FE'), 4(b,4,E2T2F1iT'2*F1iT'1,*FE'), 6.1(q,4,E2T2F1iT'2*F1iT'2,*FT'E'), 4(b,4,E2T2F1iT'2*F1iT'2,*FT'E'), 6.3(b,4,E2T2F1iT'2*F1i,T'E'), 5(b,3,E2T2F1iT'2*F1,iT'E'), 6.1(q,3,E2T2F1iT'2*F2,(E)T'E'), 4(b,3,E2T2F1iT'2*F2,(E)T'E'), 6.3(b,3,E2T2F1iT'2*,FT'E'), 5(b,2,E2T2F1iT'2,*FT'E'), 6.3(b,2,E2T2F1i,T'E'), 5(b,1,E2T2F1,iT'E'), 6.1(q,1,E2T2F2,(E)T'E'), 4(b,1,E2T2F2,(E)T'E'), 6.3(b,1,E2T2,FT'E'), 6.3(b,1,E2,TE'), 6.3(b,1,λ,E)
2. (q,1,λ,E), 1(q,1,E1,T), 1(q,1,E1T1,F), 1(q,1,E1T1F1,i), 2(q,2,E1T1F1i,λ), 4(b,2,E1T1F1i,λ), 5(b,1,E1T1F1,i), 6.1(q,1,E1T1F2,(E)), 4(b,1,E1T1F2,(E)), 6.3(b,1,E1T1,F), 6.1(q,1,E1T2,FT'), 1(q,1,E1T2F1,iT'), 2(q,2,E1T2F1i,T'), 1(q,2,E1T2F1iT'1,*F), 2(q,3,E1T2F1iT'1*,F), 1(q,3,E1T2F1iT'1*F1,i), 4(b,3,E1T2F1iT'1*F1,i), 6.1(q,3,E1T2F1iT'1*F2,(E)), 4(b,3,E1T2F1iT'1*F2,(E)), 6.3(b,3,E1T2F1iT'1*,F), 5(b,2,E1T2F1iT'1,*F), 6.1(q,2,E1T2F1iT'2,*FT'), 2(q,3,E1T2F1iT'2*,FT'), 1(q,3,E1T2F1iT'2*F1,iT'), 4(b,3,E1T2F1iT'2*F1,iT'), 6.1(q,3,E1T2F1iT'2*F2,(E)T'), 4(b,3,E1T2F1iT'2*F2,(E)T'), 6.3(b,3,E1T2F1iT'2*,FT'), 5(b,2,E1T2F1iT'2,*FT'), 6.3(b,2,E1T2F1i,T'), 5(b,1,E1T2F1,iT'), 6.1(q,1,E1T2F2,(E)T'), 4(b,1,E1T2F2,(E)T'), 6.3(b,1,E1T2,FT'), 6.3(b,1,E1,T), 6.1(q,1,E2,TE'), 1(q,1,E2T1,FE'), 1(q,1,E2T1F1,iE'), 2(q,2,E2T1F1i,E'), 1(q,2,E2T1F1iE'1,+T), 4(b,2,E2T1F1iE'1,+T), 6.1(q,2,E2T1F1iE'2,+TE'), 4(b,2,E2T1F1iE'2,+TE'), 6.3(b,2,E2T1F1i,E'), 5(b,1,E2T1F1,iE'), 6.1(q,1,E2T1F2,(E)E'), 4(b,1,E2T1F2,(E)E'), 6.3(b,1,E2T1,FE'), 6.1(q,1,E2T2,FT'E'), 1(q,1,E2T2F1,iT'E'), 2(q,2,E2T2F1i,T'E'), 1(q,2,E2T2F1iT'1,*FE'), 2(q,3,E2T2F1iT'1*,FE'), 1(q,3,E2T2F1iT'1*F1,iE'), 4(b,3,E2T2F1iT'1*F1,iE'), 6.1(q,3,E2T2F1iT'1*F2,(E)E'), 4(b,3,E2T2F1iT'1*F2,(E)E'), 6.3(b,3,E2T2F1iT'1*,FE'), 5(b,2,E2T2F1iT'1,*FE'), 6.1(q,2,E2T2F1iT'2,*FT'E'), 2(q,3,E2T2F1iT'2*,FT'E'), 1(q,3,E2T2F1iT'2*F1,iT'E'), 4(b,3,E2T2F1iT'2*F1,iT'E'), 6.1(q,3,E2T2F1iT'2*F2,(E)T'E'), 4(b,3,E2T2F1iT'2*F2,(E)T'E'), 6.3(b,3,E2T2F1iT'2*,FT'E'), 5(b,2,E2T2F1iT'2,*FT'E'), 6.3(b,2,E2T2F1i,T'E'), 5(b,1,E2T2F1,iT'E'), 6.1(q,1,E2T2F2,(E)T'E'), 4(b,1,E2T2F2,(E)T'E'), 6.3(b,1,E2T2,FT'E'), 6.3(b,1,E2,TE'), 6.3(b,1,λ,E)
1. (q,1,λ,S), 1(q,1,S1,aAbB), 2(q,2,S1a,AbB), 1(q,2,S1aA1,aAcbB), 4(b,2,S1aA1,aAcbB), 6.1(q,2,S1aA2,bB), 2(q,3,S1aA2b,B), 1(q,3,S1aA2bB1,bB), 4(b,3,S1aA2bB1,bB), 6.1(q,3,S1aA2bB2,c), 4(b,3,S1aA2bB2,c), 6.3(b,3,S1aA2b,B), 5(b,2,S1aA2,bB), 6.3(b,2,S1a,AbB), 5(b,1,S1,aAbB), 6.3(b,1,λ,S)
2. (q,1,λ,S), 1(q,1,S1,aAbB), 2(q,2,S1a,AbB), 1(q,2,S1aA1,aAcbB), 2(q,3,S1aA1a,AcbB), 1(q,3,S1aA1aA1,aAccbB), 4(b,3,S1aA1aA1,aAccbB), 6.1(q,3,S1aA1aA2,cbB), 4(b,3,S1aA1aA2,cbB), 6.3(b,3,S1aA1a,AcbB), 5(b,2,S1aA1,aAcbB), 6.1(q,2,S1aA2,bB), 4(b,2,S1aA2,bB), 6.3(b,2,S1a,AbB), 5(b,1,S1,aAbB), 6.3(b,1,λ,S)
1. (q,1,λ,S), 1(q,1,S1,AB), 1(q,1,S1A1,aAbB), 2(q,2,S1A1a,AbB), 1(q,2,S1A1aA1,aAbbB), 4(b,2,S1A1aA1,aAbbB), 6.1(q,2,S1A1aA2,aAbB), 4(b,2,S1A1aA2,aAbB), 6.1(q,2,S1A1aA3,bbB), 2(q,3,S1A1aA3b,bB), 2(q,4,S1A1aA3bb,B), 1(q,4,S1A1aA3bbB1,AA), 1(q,4,S1A1aA3bbB1A1,aAbA), 2(q,5,S1A1aA3bbB1A1a,AbA), 1(q,5,S1A1aA3bbB1A1aA1,aAbbA), 4(b,5,S1A1aA3bbB1A1aA1,aAbbA), 6.1(q,5,S1A1aA3bbB1A1aA2,aAbA), 4(b,5,S1A1aA3bbB1A1aA2,aAbA), 6.1(q,5,S1A1aA3bbB1A1aA3,bbA), 2(q,6,S1A1aA3bbB1A1aA3b,bA), 4(b,6,S1A1aA3bbB1A1aA3b,bA), 5(b,5,S1A1aA3bbB1A1aA3,bbA), 6.3(b,5,S1A1aA3bbB1A1a,AbA), 5(b,4,S1A1aA3bbB1A1,aAbA), 6.1(q,4,S1A1aA3bbB1A2,aAA), 2(q,5,S1A1aA3bbB1A2a,AA), 1(q,5,S1A1aA3bbB1A2aA1,aAbA), 4(b,5,S1A1aA3bbB1A2aA1,aAbA), 6.1(q,5,S1A1aA3bbB1A2aA2,aAA), 4(b,5,S1A1aA3bbB1A2aA2,aAA), 6.1(q,5,S1A1aA3bbB1A2aA3,bA), 2(q,6,S1A1aA3bbB1A2aA3b,A), 1(q,6,S1A1aA3bbB1A2aA3bA1,aAb), 4(b,6,S1A1aA3bbB1A2aA3bA1,aAb), 6.1(q,6,S1A1aA3bbB1A2aA3bA2,aA), 4(b,6,S1A1aA3bbB1A2aA3bA2,aA), 6.1(q,6,S1A1aA3bbB1A2aA3bA3,b), 4(b,6,S1A1aA3bbB1A2aA3bA3,b), 6.3(b,6,S1A1aA3bbB1A2aA3b,A), 5(b,5,S1A1aA3bbB1A2aA3,bA), 6.3(b,5,S1A1aA3bbB1A2a,AA), 5(b,4,S1A1aA3bbB1A2,aAA), 6.1(q,4,S1A1aA3bbB1A3,bA), 4(b,4,S1A1aA3bbB1A3,bA), 6.3(b,4,S1A1aA3bbB1,AA), 6.3(b,4,S1A1aA3bb,B), 5(b,3,S1A1aA3b,bB), 5(b,2,S1A1aA3,bbB), 6.3(b,2,S1A1a,AbB), 5(b,1,S1A1,aAbB), 6.1(q,1,S1A2,aAB), 2(q,2,S1A2a,AB), 1(q,2,S1A2aA1,aAbB), 4(b,2,S1A2aA1,aAbB), 6.1(q,2,S1A2aA2,aAB), 4(b,2,S1A2aA2,aAB), 6.1(q,2,S1A2aA3,bB), 2(q,3,S1A2aA3b,B), 1(q,3,S1A2aA3bB1,AA), 1(q,3,S1A2aA3bB1A1,aAbA), 4(b,3,S1A2aA3bB1A1,aAbA), 6.1(q,3,S1A2aA3bB1A2,aAA), 4(b,3,S1A2aA3bB1A2,aAA), 6.1(q,3,S1A2aA3bB1A3,bA), 2(q,4,S1A2aA3bB1A3b,A), 1(q,4,S1A2aA3bB1A3bA1,aAb), 2(q,5,S1A2aA3bB1A3bA1a,Ab), 1(q,5,S1A2aA3bB1A3bA1aA1,aAbb), 4(b,5,S1A2aA3bB1A3bA1aA1,aAbb), 6.1(q,5,S1A2aA3bB1A3bA1aA2,aAb), 4(b,5,S1A2aA3bB1A3bA1aA2,aAb), 6.1(q,5,S1A2aA3bB1A3bA1aA3,bb), 2(q,6,S1A2aA3bB1A3bA1aA3b,b), 4(b,6,S1A2aA3bB1A3bA1aA3b,b), 5(b,5,S1A2aA3bB1A3bA1aA3,bb), 6.3(b,5,S1A2aA3bB1A3bA1a,Ab), 5(b,4,S1A2aA3bB1A3bA1,aAb), 6.1(q,4,S1A2aA3bB1A3bA2,aA), 2(q,5,S1A2aA3bB1A3bA2a,A), 1(q,5,S1A2aA3bB1A3bA2aA1,aAb), 4(b,5,S1A2aA3bB1A3bA2aA1,aAb), 6.1(q,5,S1A2aA3bB1A3bA2aA2,aA), 4(b,5,S1A2aA3bB1A3bA2aA2,aA), 6.1(q,5,S1A2aA3bB1A3bA2aA3,b), 2(q,6,S1A2aA3bB1A3bA2aA3b,λ)
2. (q,1,λ,S), 1(q,1,S1,AB), 1(q,1,S1A1,aAbB), 4(b,1,S1A1,aAbB), 6.1(q,1,S1A2,aAB), 4(b,1,S1A2,aAB), 6.1(q,1,S1A3,bB), 2(q,2,S1A3b,B), 1(q,2,S1A3bB1,AA), 1(q,2,S1A3bB1A1,aAbA), 4(b,2,S1A3bB1A1,aAbA), 6.1(q,2,S1A3bB1A2,aAA), 4(b,2,S1A3bB1A2,aAA), 6.1(q,2,S1A3bB1A3,bA), 2(q,3,S1A3bB1A3b,A), 1(q,3,S1A3bB1A3bA1,aAb), 4(b,3,S1A3bB1A3bA1,aAb), 6.1(q,3,S1A3bB1A3bA2,aA), 4(b,3,S1A3bB1A3bA2,aA), 6.1(q,3,S1A3bB1A3bA3,b), 2(q,4,S1A3bB1A3bA3b,λ), 4(b,4,S1A3bB1A3bA3b,λ), 5(b,3,S1A3bB1A3bA3,b), 6.3(b,3,S1A3bB1A3b,A), 5(b,2,S1A3bB1A3,bA), 6.3(b,2,S1A3bB1,AA), 6.3(b,2,S1A3b,B), 5(b,1,S1A3,bB), 6.3(b,1,S1,AB), 6.3(b,1,λ,S)
1. (q,1,λ,S), 1(q,1,S1,(S)S), 2(q,2,S1(,S)S), 1(q,2,S1(S1,(S)S)S), 2(q,3,S1(S1(,S)S)S), 1(q,3,S1(S1(S1,(S)S)S)S), 4(b,3,S1(S1(S1,(S)S)S)S), 6.1(q,3,S1(S1(S2,)S)S), 2(q,4,S1(S1(S2),S)S), 1(q,4,S1(S1(S2)S1,(S)S)S), 4(b,4,S1(S1(S2)S1,(S)S)S), 6.1(q,4,S1(S1(S2)S2,)S), 2(q,5,S1(S1(S2)S2),S), 1(q,5,S1(S1(S2)S2)S1,(S)S), 4(b,5,S1(S1(S2)S2)S1,(S)S), 6.1(q,5,S1(S1(S2)S2)S2,λ)
2. (q,1,λ,S), 1(q,1,S1,(S)S), 2(q,2,S1(,S)S), 1(q,2,S1(S1,(S)S)S), 4(b,2,S1(S1,(S)S)S), 6.1(q,2,S1(S2,)S), 2(q,3,S1(S2),S), 1(q,3,S1(S2)S1,(S)S), 4(b,3,S1(S2)S1,(S)S), 6.1(q,3,S1(S2)S2,λ), 4(b,3,S1(S2)S2,λ), 6.3(b,3,S1(S2),S), 5(b,2,S1(S2,)S), 6.3(b,2,S1(,S)S), 5(b,1,S1,(S)S), 6.1(q,1,S2,λ), 4(b,1,S2,λ), 6.3(b,1,λ,S)
1. (q,1,λ,S), 1(q,1,S1,aSa), 2(q,2,S1a,Sa), 1(q,2,S1aS1,aSaa), 4(b,2,S1aS1,aSaa), 6.1(q,2,S1aS2,bSba), 2(q,3,S1aS2b,Sba), 1(q,3,S1aS2bS1,aSaba), 4(b,3,S1aS2bS1,aSaba), 6.1(q,3,S1aS2bS2,bSbba), 2(q,4,S1aS2bS2b,Sbba), 1(q,4,S1aS2bS2bS1,aSabba), 4(b,4,S1aS2bS2bS1,aSabba), 6.1(q,4,S1aS2bS2bS2,bSbbba), 2(q,5,S1aS2bS2bS2b,Sbbba), 1(q,5,S1aS2bS2bS2bS1,aSabbba), 4(b,5,S1aS2bS2bS2bS1,aSabbba), 6.1(q,5,S1aS2bS2bS2bS2,bSbbbba), 4(b,5,S1aS2bS2bS2bS2,bSbbbba), 6.1(q,5,S1aS2bS2bS2bS3,abbba), 4(b,5,S1aS2bS2bS2bS3,abbba), 6.1(q,5,S1aS2bS2bS2bS4,bbbba), 4(b,5,S1aS2bS2bS2bS4,bbbba), 6.1(q,5,S1aS2bS2bS2bS5,bbba), 4(b,5,S1aS2bS2bS2bS5,bbba), 6.3(b,5,S1aS2bS2bS2b,Sbbba), 5(b,4,S1aS2bS2bS2,bSbbba), 6.1(q,4,S1aS2bS2bS3,abba), 4(b,4,S1aS2bS2bS3,abba), 6.1(q,4,S1aS2bS2bS4,bbba), 2(q,5,S1aS2bS2bS4b,bba), 4(b,5,S1aS2bS2bS4b,bba), 5(b,4,S1aS2bS2bS4,bbba), 6.1(q,4,S1aS2bS2bS5,bba), 2(q,5,S1aS2bS2bS5b,ba), 4(b,5,S1aS2bS2bS5b,ba), 5(b,4,S1aS2bS2bS5,bba), 6.3(b,4,S1aS2bS2b,Sbba), 5(b,3,S1aS2bS2,bSbba), 6.1(q,3,S1aS2bS3,aba), 4(b,3,S1aS2bS3,aba), 6.1(q,3,S1aS2bS4,bba), 2(q,4,S1aS2bS4b,ba), 2(q,5,S1aS2bS4bb,a), 4(b,5,S1aS2bS4bb,a), 5(b,4,S1aS2bS4b,ba), 5(b,3,S1aS2bS4,bba), 6.1(q,3,S1aS2bS5,ba), 2(q,4,S1aS2bS5b,a), 4(b,4,S1aS2bS5b,a), 5(b,3,S1aS2bS5,ba), 6.3(b,3,S1aS2b,Sba), 5(b,2,S1aS2,bSba), 6.1(q,2,S1aS3,aa), 4(b,2,S1aS3,aa), 6.1(q,2,S1aS4,ba), 2(q,3,S1aS4b,a), 4(b,3,S1aS4b,a), 5(b,2,S1aS4,ba), 6.1(q,2,S1aS5,a), 4(b,2,S1aS5,a), 6.3(b,2,S1a,Sa), 5(b,1,S1,aSa), 6.1(q,1,S2,bSb), 4(b,1,S2,bSb), 6.1(q,1,S3,a), 2(q,2,S3a,λ), 4(b,2,S3a,λ), 5(b,1,S3,a), 6.1(q,1,S4,b), 4(b,1,S4,b), 6.1(q,1,S5,λ), 4(b,1,S5,λ), 6.3(b,1,λ,S)
2. (q,1,λ,S), 1(q,1,S1,aSa), 2(q,2,S1a,Sa), 1(q,2,S1aS1,aSaa), 4(b,2,S1aS1,aSaa), 6.1(q,2,S1aS2,bSba), 2(q,3,S1aS2b,Sba), 1(q,3,S1aS2bS1,aSaba), 2(q,4,S1aS2bS1a,Saba), 1(q,4,S1aS2bS1aS1,aSaaba), 4(b,4,S1aS2bS1aS1,aSaaba), 6.1(q,4,S1aS2bS1aS2,bSbaba), 2(q,5,S1aS2bS1aS2b,Sbaba), 1(q,5,S1aS2bS1aS2bS1,aSababa), 4(b,5,S1aS2bS1aS2bS1,aSababa), 6.1(q,5,S1aS2bS1aS2bS2,bSbbaba), 4(b,5,S1aS2bS1aS2bS2,bSbbaba), 6.1(q,5,S1aS2bS1aS2bS3,ababa), 4(b,5,S1aS2bS1aS2bS3,ababa), 6.1(q,5,S1aS2bS1aS2bS4,bbaba), 4(b,5,S1aS2bS1aS2bS4,bbaba), 6.1(q,5,S1aS2bS1aS2bS5,baba), 4(b,5,S1aS2bS1aS2bS5,baba), 6.3(b,5,S1aS2bS1aS2b,Sbaba), 5(b,4,S1aS2bS1aS2,bSbaba), 6.1(q,4,S1aS2bS1aS3,aaba), 4(b,4,S1aS2bS1aS3,aaba), 6.1(q,4,S1aS2bS1aS4,baba), 2(q,5,S1aS2bS1aS4b,aba), 4(b,5,S1aS2bS1aS4b,aba), 5(b,4,S1aS2bS1aS4,baba), 6.1(q,4,S1aS2bS1aS5,aba), 4(b,4,S1aS2bS1aS5,aba), 6.3(b,4,S1aS2bS1a,Saba), 5(b,3,S1aS2bS1,aSaba), 6.1(q,3,S1aS2bS2,bSbba), 4(b,3,S1aS2bS2,bSbba), 6.1(q,3,S1aS2bS3,aba), 2(q,4,S1aS2bS3a,ba), 2(q,5,S1aS2bS3ab,a), 4(b,5,S1aS2bS3ab,a), 5(b,4,S1aS2bS3a,ba), 5(b,3,S1aS2bS3,aba), 6.1(q,3,S1aS2bS4,bba), 4(b,3,S1aS2bS4,bba), 6.1(q,3,S1aS2bS5,ba), 4(b,3,S1aS2bS5,ba), 6.3(b,3,S1aS2b,Sba), 5(b,2,S1aS2,bSba), 6.1(q,2,S1aS3,aa), 4(b,2,S1aS3,aa), 6.1(q,2,S1aS4,ba), 2(q,3,S1aS4b,a), 2(q,4,S1aS4ba,λ), 4(b,4,S1aS4ba,λ), 5(b,3,S1aS4b,a), 5(b,2,S1aS4,ba), 6.1(q,2,S1aS5,a), 4(b,2,S1aS5,a), 6.3(b,2,S1a,Sa), 5(b,1,S1,aSa), 6.1(q,1,S2,bSb), 4(b,1,S2,bSb), 6.1(q,1,S3,a), 2(q,2,S3a,λ), 4(b,2,S3a,λ), 5(b,1,S3,a), 6.1(q,1,S4,b), 4(b,1,S4,b), 6.1(q,1,S5,λ), 4(b,1,S5,λ), 6.3(b,1,λ,S)