[1] Adan, I. and Resing, J.. Queueing Theory, http://web2.uwindsor.ca/math/hlynka/qonline.html
.
[2] Allen, Arnold O.. Probability, statistics, and queueing theory with computer science applications, 2nd ed.. Academic Press, Inc., Boston, MA. 1990.
[3] Anisimov, V. V. and Zakusilo, O. K. and Donchenko, V. S.. Elements of queueing theory and asymptotic analysis of system. Visha Skola, Kiev. 1987.
[4] Artalejo, J. and Gómez-Corral, A.. Retrial queueing syste. Springer, Berlin. 2008.
[5] Asztalos, D.. Véges forrású tömegkiszolgálási modellek alkalmazása számítógépes rendszerekre. Alkalmazott Matemaika Lapok. 1990. 89–101.
[6] Begain, Khalid and Bolch, Gunter and Herold, Helmutiley. Practical perfromance modeling, Application of the MOSEL language. Wiley & Sons., New York. 2001.
[7] Bolch, G. and Greiner, S. and de Meer, H. and Trivedi, K. S.. Queueing networks and Markov chains, 2nd ed. Wiley & Sons, New York. 2006.
[8] Bose, S. K.. An introduction to queueing systems. Kluwer Academic/Plenum Publishers, New York. 2002.
[9] Cee-Hock, N. and Boon-He, S.. Queueing modelling fundamentals, 2nd ed.. Wiley & Son, Chichester. 2002.
[10] Cooper, R. B. Introduction to Queueing Theory, 3-rd Edition. CEE Press, Washington. 1990, http://web2.uwindsor.ca/math/hlynka/qonline.html
.
[11] Csige, L. and Tomkó, J.. A gépkiszolgálási probléma exponenciális eloszlások esetén. Alkalmazott Matematika Lapok. 1982. 107–124.
[12] Daigle, J. N.. Queueing theory with applications to packet telecommunication. Springer, New York. 2005.
[13] Daigle, J. N. Queueing theory for telecommunications. Addison-Wesley, Reading, MA. 1992.
[14] Dattatreya, G. R.. Performance analysis of queuing and computer networks. CRC Press, Boca Raton. 2008.
[15] Dshalalow, Jewgeni H.(ed.). Frontiers in queueing. CRC Press, Boca Raton. 1997.
[16] Falin, G. and Templeton, J. G.. Retrial queues. Chapman and Hall, London. 1997.
[17] Fazekas, István. Valószínűségszámítás. Kossuth Egyetemi Kiadó, Debrecen. 2000.
[18] Franken, P. and Konig, D. and Arndt, U. Schmidt, V.. Queues and point processes. Academie Verlag, Berlin. 1981.
[19] Gebali, F.. Analysis of computer and communication networks. Springer, New York. 2008.
[20] Gelenbe, E. and Mitrani, I.. Analysis and synthesis of computer systems. Academic Press, London. 1980.
[21] Gelenbe, E. and Pujolle, G.. Introduction to queueing networks. Wiley & Sons, Chichester. 1987.
[22] Gnedenko, B. V. and Belyayev, Y. K. and Solovyev, A. D.. Mathematical methods of reliability theory. Academic Press, New York, London. 1969.
[23] Gnedenko, B. V. and Kovalenko, I. N.. Introduction to queueing theory. Birkhäuser, Boston, MA. 1991.
[24] Gnyegyenko, B. V. and Beljajev, J. K. and Szolovjev, A. D.. A megbízhatóságelmélet matematikai módszerei. Műszaki Könyvkiadó, Budapest. 1970.
[25] Gross, D. and Shortle, J. F. and Thompson, J. M. and Harris, C. M.. Fundamentals of queueing theory, 4th edition. John Wiley & Sons, New York. 2008.
[26] Györfi, L. and Páli, I.. Tömegkiszolgálás informatikai rendszerekben. Műegyetemi Kiadó, Budapest. 1996.
[27] Haghighi, A. M. and Mishev, D. P.. Queueing models in industry and business. Nova Science Publishers, Inc., New York. (2008).
[28] Hall, Randolph W.. Queueing methods for services and manufacturing. Prentice Hall, Englewood Cliffs, NJ. 1991.
[29] Haribaskaran, G.. Probability, queueing theory and reliability engineering. Laxmi Publications, Bangalore. 2006.
[30] Haverkort, Boudewijn. Performance of computer communication systems, A model-based approach. Wiley & Sons, New York. 1998.
[32] van Hoorn, M. H.. Algorithms and approximations for queueing systems. Centrum voor Wiskunde en Informatica, Amsterdam. 1984.
[33] Ivcsenko, G. I. and Kastanov, V. A and Kovalenko, I. N.. Theory of queueing systems. Nauka, Moscow. 1982.
[34] Jain, R.. The art of computer systems performance analysis. Wiley & Sons, New York. 1991.
[35] Jaiswal, N.K.. Priority queues. Academic Press, New York. 1969.
[36] Jereb, L. and Telek, M.. Sorbanállásos rendszerek. Oktatási segédlet, BME Híradástechnikai Tanszék, http://webspn.hit.bme.hu/~telek/notes/sokfelh.pdf
.
[37] Karlin, S. and Taylor, H. M.. Sztochasztikus folyamatok. Gondolat Kiadó, Budapest. 1985.
[38] KaKhintchine, A. Y.. Mathematical methods in the theory of queueing. Hafner, New York. 1969.
[39] Kleinrock, Leonard. Queueing systems. Vol. II: Computer applications.. John Wiley & Sons, New York. 1976.
[40] Kleinrock, Leonard. Queueing systems. Vol. I: Theory. John Wiley & Sons, New York. 1975.
[41] leinrock, L.. Sorbanállás, kiszolgálás: Bevezetés a tömegkiszolgálási rendszerek elméletébe. Műszaki Kiadó, Budapest. 1975.
[42] Kobayashi, H.. Modeling and Analysis: An Introduction to System Performance Evaluation Methodology. Addison-Wesley, Reading, MA. 1978.
[43] Kobayashi, H. and Mark, B. L.. System modeling and analysis: Foundations of system performance evaluation. Pearson Education Inc., Upper Sadle River. 2008.
[44] Korolyuk, V. S. and Korolyuk, V. V.. Stochastic models of systems. Kluwer Academic Publishers, Dordrecht, London. 1999.
[45] Kovalenko, I. N. and Pegg, P. A. and Kuznetzov, N. Yu.. Mathematical theory of reliability of time dependent systems with practical applications. Wiley & Sons, New York. 1997.
[46] Kulkarni, V.. Modeling, analysis, design, and control of stochastic systems. Springer, New York. 1999.
[47] Lakatos, L. and Szeidl, L. and Telek, M.. Informatikai algoritmusok II. ELTE Eötvös Kiadó. 2005. 1298–1347.
[48] Lavenberg, S.(Ed.. Computer performance modeling handbook. Academic Press, New York. 1983.
[49] Mieghem, P. V.. Performance analysis of communications networks and systems. Cambridge University Press, Cambridge. 2006.
[50] Nelson, Randolph.. Probability, stochastic processes, and queueing theory, The mathematics of computer performance modeling. Springer-Verlag, New York. 1995.
[51] Ovcharov, L. and Wentzel, E.. Applied Problems in Probability Theory. Mir Publishers, Moscow, New York. 1986.
[52] Prékopa, András. Valószínűségelmélet, Műszaki Könyvkiadó, Budapest. 1962.
[53] Pósafalvi, A. and Sztrik, J.. A Numerical Approach to the Repairman Problem with Two Different Types of Machines, Journal of Operational Reseach Society. 1989. 797–803.
[54] Pósafalvi, A. and Sztrik, J.. On the Heterogeneous Machine Interference with Limited Server's Availability, European Journal of Operational Research. 1987. 321–328.
[55] Ravichandran, N.. Stochastic Methods in Reliability Theory. John Wiley and Sons, New York. 1990.
[56] Reimann, J.. Valószínűségelmélet és matematikai statisztika mérnököknek. Tankönyvkiadó, Budapest. 1992.
[57] Rényi, Alfréd. Valószínűségszámítás. Tankönyvkiadó, Budapest. 1973.
[58] Ross, S. M.. Introduction to Probability Models. Academic Press, Boston. 1989.
[59] Saaty, T. L.. Elements of queueing theory with applications, Dover Publications, Inc., New York. 1961.
[60] Sahner, R. and Trivedi, K. and Puliafito, A.. Performance and reliability analysis of computer systems – An example-based approach using the SHARPE software package. Kluwer Academic Publisher, Boston, M.A.. 1996.
[61] Sauer, C. H. and Chandy, K. M.. Computer systems performance modelling. Prentice Hall, Englewood Cliffs, N. J.. 1981.
[62] Stewart , W. J.. Introduction to the numerical solution of Markov chains. Princeton University Press, Princeton. 1995.
[63] Stewart , W. J.. Probability, Markov chains, queues, and simulation. Princeton University Press, Princeton. 2009.
[64] Sztrik, János. Informatikai rendszerek hatékonyságának elemzése. EKF Líceum Kiadó, Eger. 2007.
[65] Sztrik, János. Gyakorlati sorbanállási elmélet. Oktatási segédlet, Debreceni Egyetem, Informatikai Kar.
2005,http://irh.inf.unideb.hu/user/jsztrik/education/09/index.html
.
[66] Sztrik, J.. Kulcs a sorbanállási elmélethez és alkalmazásaihoz. Kossuth Egyetemi Kiadó, Debrecen.
2004,http://irh.inf.unideb.hu/user/jsztrik/education/eNotes.htm
.
[67] Sztrik, J.. Bevezetés a sorbanállási elméletbe és alkalmazásaiba. 2000, http://irh.inf.unideb.hu/user/jsztrik/education/eNotes.htm
.
[68] Sztrik, J.. On the
Machine Interference Model with State-Dependent Speeds. Journal of Operational Researc Society. 1988. 201–201.
[69] Sztrik, J.. Some Contribution to the Machine Interference Problem with Heterogeneous Machines. Journal of Information Processing and Cybernetics. 1988. 137–143.
[70] Sztrik, J.. On the finite-source
queues. European Journal of Operational Research. 1985. 261–268.
[71] Takagi, Hideaki. Queueing analysis. A foundation of performance evaluation. Volume 2. Finite Systems, North-Holland, Amsterdam. 1993.
[72] Takagi, Hideaki. Queueing analysis. A foundation of performance evaluation. Volume 3. Discrete-Time Systems, North-Holland, Amsterdam. 1993.
[73] Takagi, Hideaki. Queueing analysis. A foundation of performance evaluation. Volume 1. Vacation and priority systems, part 1., North-Holland, Amsterdam. 1991.
[74] Takács, L.. Introduction to the theory of queues. Oxford University Press, New York. 1962.
[75] Tijms, H. C.. A first course in stochastic models. Wiley & Son, Chichester. 2003.
[76] Tijms, H. C.. Stochastic Modelling and Analysis: A Computational Approach. Wiley & Sons, New York. 1986.
[77] Tomkó, J.. Tartózkodási időproblémák Markov-láncokra. Alkalmazott Matematikai Lapok. 1982. 91–106.
[78] Trivedi, K. S.. Probability and Statistics with Reliability, Queuing, and Computer Science Applications, 2-nd edition. Wiley & Son, New York. 2002.
[79] Ushakov, Igor A.(Ed.) and Harrison, Robert A.(Ed.). Handbook of reliability engineering. Transl. from the Russian. Updated ed.. Wiley & Sons, New York, NY. 1994.
[81] Wentzel, E. and Ovcharov, L.. Applied problems in probabbility theory. Mir Publisher, Moscow. 1986.
[82] Yashkov, S. F.. Processor-sharing queues, some progress in analysis, Queueing Systems, Theory and Applications. 1987. 1–17.